The C-C chemokine receptor 5, 32 base-pair deletion (CCR5-Δ32) allele confers strong resistance to infection by the AIDS virus HIV. Previous studies have suggested that CCR5-Δ32 arose within the past 1,000 y and rose to its present high frequency (5%–14%) in Europe as a result of strong positive selection, perhaps by such selective agents as the bubonic plague or smallpox during the Middle Ages. This hypothesis was based on several lines of evidence, including the absence of the allele outside of Europe and long-range linkage disequilibrium at the locus. We reevaluated this evidence with the benefit of much denser genetic maps and extensive control data. We find that the pattern of genetic variation at CCR5-Δ32 does not stand out as exceptional relative to other loci across the genome. Moreover using newer genetic maps, we estimated that the CCR5-Δ32 allele is likely to have arisen more than 5,000 y ago. While such results can not rule out the possibility that some selection may have occurred at C-C chemokine receptor 5 (CCR5), they imply that the pattern of genetic variation seen atCCR5-Δ32 is consistent with neutral evolution. More broadly, the results have general implications for the design of future studies to detect the signs of positive selection in the human genome.
We investigated the effect of incorporating information about proband and parental structural language phenotypes into linkage analyses in the two regions for which we found the highest signals in our first-stage affected sibling pair genome screen: chromosomes 13q and 7q. We were particularly interested in following up on our chromosome 7q finding in light of two prior reports of linkage of this region to developmental language disorder, since one of the diagnostic criteria for autism is absent or abnormal language development. We hypothesized that if the language phenotype were genetically relevant to linkage at the chromosome 7q locus, then incorporating parents phenotypes would increase the signal at that locus, and most of the signal would originate from the subset of families in which both probands had severe language delay. The results support these hypotheses. The linkage signals we obtained on chromosome 7q as well as at least one signal on chromosome 13q are mainly attributable to the subgroup of families in which both probands had language delay. This became apparent only when the parents' history of language-related difficulties was also incorporated into the analyses. Although based on our data, we were not able to distinguish between epistasis or heterogeneity models, we tentatively concluded that there may be more than one autism susceptibility locus related to language development.
There is considerable debate about the fundamental mechanisms that underlie and restrict acquisition of human immunodeficiency virus type 1 (HIV-1) infection. In light of recent studies demonstrating the ability of C type lectins to facilitate infection with HIV-1, we explored the potential relationship between polymorphisms in the DC-SIGN promoter and risk for acquisition of HIV-1 according to route of infection. Using samples obtained from 1,611 European-American participants at risk for parenteral (n ؍ 713) or mucosal (n ؍ 898) infection, we identified single-nucleotide polymorphisms in the DC-SIGN promoter using single-strand conformation polymorphism. Individuals at risk for parenterally acquired infection who had ؊336C were more susceptible to infection than were persons with ؊336T (odds ratio ؍ 1.87, P ؍ 0.001). This association was not observed in those at risk for mucosally acquired infection. A potential role for DC-SIGN specific to systemic acquisition and dissemination of infection is suggested.
Objective Mitochondrial function plays a role in both AIDS progression and highly active antiretroviral therapy (HAART) toxicity, therefore we sought to determine whether mitochondrial (mt) DNA variation revealed novel AIDS Restriction Genes (ARGs), particularly as mtDNA single nucleotide polymorphisms (SNPs) are known to influence regulation of oxidative phosphorylation, reactive oxygen species (ROS) production, and apoptosis. Design Retrospective cohort study. Methods We performed an association study of mtDNA haplogroups among 1833 European American HIV-1 patients from five US cohorts, the Multicenter AIDS Cohort Study (MACS), the San Francisco City Clinic Study (SFCC), Hemophilia Growth and Development Study (HGDS), the Multicenter Hemophilia Cohort Study (MHCS), and the AIDS Linked to Intravenous Experiences (ALIVE) cohort to determine whether the mtDNA haplogroup correlated with AIDS progression rate. Results MtDNA haplogroups J and U5a were elevated among HIV-1 infected people who display accelerated progression to AIDS and death. Haplogroups Uk, H3, and IWX appeared to be highly protective against AIDS progression. Conclusions The associations found in our study appear to support a functional explanation by which mtDNA variation among haplogroups influencing ATP production, ROS generation, and apoptosis is correlated to AIDS disease progression, however repeating these results in cohorts with different ethnic backgrounds would be informative. These data suggest that mitochondrial genes are important indicators of AIDS disease progression in HIV-1 infected persons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.