Three fluoroquinolone-to-fluoroquinolone antibiotic transformations were monitored during UV-C irradiation processes. In particular, the following reactions were observed: enrofloxacin-to-ciprofloxacin, difloxacin-to-sarafloxacin, and pefloxacin-to-norfloxacin. The apparent molar absorptivity and fluence-based pseudo-first-order rate constants for transformation of the six fluoroquinolones by direct photolysis at 253.7 nm were determined for the pH 2-12 range. These parameters were deconvoluted to calculate specific molar absorptivity and fluence-based rate constants for cationic, zwitterionic, and anionic fluoroquinolone species. For a typical disinfection fluence of 40 mJ/cm(2), the apparent transformation efficiencies were inflated by 2-8% when fluoroquinolone products were not considered; moreover, the overall transformation efficiencies at 400 mJ/cm(2) varied by up to 40% depending on pH. The three product antibiotics, namely ciprofloxacin, sarafloxacin, and norfloxacin, were found to be equally or more potent than the parent fluoroquinolones using an Escherichia coli-based assay. UV treatment of a solution containing difloxacin was found to increase antimicrobial activity due to formation of sarafloxacin. These results highlight the importance of considering antibiotic-to-antibiotic transformations in UV-based processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.