An unusual Cretaceous trap jaw ant is described from Burmese amber dated to the Late Cretaceous. Linguamyrmex vladi gen.n. sp.n. is distinguished by an unusual suite of morphological characters indicating specialized predatory behaviour and an adaptive strategy no longer found among modern ant lineages. The clypeus, highly modified as in other closely related haidomyrmecine hell ants, is equipped with a paddle‐like projection similar to Ceratomyrmex. X‐ray imaging reveals that this clypeal paddle is reinforced, most probably with sequestered metals. Presumably this fortified clypeal structure was utilized in tandem with scythe‐like mandibles to pin and potentially puncture soft‐bodied prey. This unique taxon, which stresses the diversity of stem‐group ants, is discussed in the context of modern and other Cretaceous trap jaw ant species. This published work has been registered in ZooBank, http://zoobank.org/urn:lsid:zoobank.org:pub:40D636A3-4D88-470A-BC5B-85ABFD1A49E2.
Among the many inclusions from the exceptionally rich fossiliferous amber of Zhangpu, China (Middle Miocene: Langhian), stingless bees (Apinae: Meliponini) are particularly common, analogous to the merely slightly older amber sites of Mexico and the Dominican Republic. While there is a large number of workers in Zhangpu amber, only two species are represented. The systematics and morphology of the tribe Meliponini is outlined, including a revision to terms of orientation and direction when discussing surfaces and features of appendages, all in order to better discuss the traits of the fossils as well as place them into a broader context in the global systematics of stingless bees. The two amber species are representative of two Old World genera of Meliponini: Tetragonula Moure and Austroplebeia Moure. While the former is widespread across southern Asia, Malesia, Papuasia, and Australia, the latter is today known only from New Guinea and Australia. Neither genus occurs in the environs of Zhangpu today. Tetragonula (Tetragonula) florilega Engel, new species, is a generally typical species of the subgenus although it intermingles traits otherwise found in two large species groups of non-Australian Tetragonula s.str. The species of Austroplebeia from Zhangpu is sufficiently distinct to place in a new subgenus, Anteplebeina Engel. Austroplebeia (Anteplebeina) fujianica Engel, new species, shares a long list of character states with Austroplebeia s.str., including the presence of yellow maculation on the face, mesoscutum, mesoscutellum, and metepisternum, found only in this clade among Asiatic Meliponini. Nonetheless, the species differs in the length of the malar space and various features of wing venation. Keys are provided to the genera in Zhangpu amber and the subgenera of both genera. The diversity of stingless bees in amber is discussed, as well as the presence of these two fossils in the Middle Miocene of mainland Asia in relation to prior divergence time estimates, phylogenetic relationships, as well as the paleogeography of the region and potential biogeographic hypotheses. The biological association of stingless bees with resins, particularly the collection of dipterocarp resins, is discussed as Zhangpu amber is a Class II resin likely produced by an extinct species of Dipterocarpaceae (Malvales). Also discussed are the ecological preferences of modern Tetragonula and Austroplebeia relative to the reconstructed paleoenvironment of the Zhangpu amber rainforest. Emendations to the classification of Meliponini are appended, with the following new taxa proposed: Atrichotrigona Engel, new subgenus of Axestotrigona Moure; Lispotrigona V.H. Gonzalez & Engel, new subgenus of Nannotrigona Cockerell; Asperplebeia Engel, new genus; Nanoplebeia Engel, new subgenus of Plebeia Schwarz; Aphaneuropsis Engel, Koilotrigona Engel, Necrotrigona Engel, Dichrotrigona Engel, Nostotrigona Engel, Ktinotrofia Engel, all new subgenera of Trigona Jurine; Chapadapis Engel, new subgenus of Schwarziana Moure. The following higher groups are also established: Hypotrigonina Engel, new sutribe; Heterotrigonitae Engel, new infratribe; Trigoniscitae Engel, new infratribe.
Angiosperms and their insect pollinators form a foundational symbiosis, evidence for which from the Cretaceous is mostly indirect, based on fossils of insect taxa that today are anthophilous, and of fossil insects and flowers that have apparent anthophilous and entomophilous specializations, respectively. We present exceptional direct evidence preserved in mid-Cretaceous Burmese amber, 100 mya, for feeding on pollen in the eudicot genus Tricolporoidites by a basal new aculeate wasp, Prosphex anthophilos, gen. et sp. nov., in the lineage that contains the ants, bees, and other stinging wasps. Plume of hundreds of pollen grains wafts from its mouth and an apparent pollen mass was detected by micro-CT in the buccal cavity: clear evidence that the wasp was foraging on the pollen. Eudicots today comprise nearly three-quarters of all angiosperm species. Prosphex feeding on Tricolporoidites supports the hypothesis that relatively small, generalized insect anthophiles were important pollinators of early angiosperms.
Insects have long been thought to largely not require hemoglobins, with some notable exceptions like the red hemolymph of chironomid larvae. The tubular, branching network of tracheae in hexapods is traditionally considered sufficient for their respiration. Where hemoglobins do occur sporadically in plants and animals, they are believed to be either convergent, or because they are ancient in origin and their expression is lost in many clades. Our comprehensive analysis of 845 Hexapod transcriptomes, totaling over 38 Gbases, revealed the expression of hemoglobins in all 32 orders of hexapods, including the 29 recognized orders of insects. Discovery and identification of 1333 putative hemoglobins were achieved with target-gene BLAST searches of the NCBI TSA database, verifying functional residues, secondary-and tertiary-structure predictions, and localization predictions based on machine learning. While the majority of these hemoglobins are intracellular, extracellular ones were recovered in 38 species. Gene trees were constructed via multiple-sequence alignments and phylogenetic analyses. These indicate duplication events within insects and a monophyletic grouping of hemoglobins outside other globin clades, for which we propose the term insectahemoglobins. These hemoglobins are phylogenetically adjacent and appear structurally convergent with the clade of chordate myoglobins, cytoglobins, and hemoglobins. Their derivation and co-option from early neuroglobins may explain the widespread nature of hemoglobins in various kingdoms and phyla. These results will guide future work involving genome comparisons to transcriptome results, experimental investigations of gene expression, cell and tissue localization, and gas binding properties, all of which are needed to further illuminate the complex respiratory adaptations in insects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.