Genome stability necessitates a mechanism to protect the termini of linear chromosomes from inappropriate degradation or recombination. In many species this protection depends on 'capping' proteins that bind telomeric DNA. The budding yeast Cdc13p binds single-stranded telomeric sequences, prevents lethal degradation of chromosome ends and regulates telomere extension by telomerase. Two Cdc13-interacting proteins, Stn1p and Ten1p, are also required for viability and telomere length regulation. It has been proposed that Cdc13p DNA binding directs a Cdc13p-Stn1p-Ten1p complex to telomeres to mediate end protection. However, the functional significance of these protein interactions, and their respective roles in maintaining telomere integrity, remain undefined. Here, we show that co-overexpressing TEN1 with a truncated form of STN1 efficiently bypasses the essential role of CDC13. We further show that this truncated Stn1p binds directly to Pol12p, a polymerase alpha-primase regulatory subunit, and that Pol12 activity is required for CDC13 bypass. Thus, Stn1p and Ten1p control a Cdc13p-independent telomere capping mechanism that is coupled to the conventional DNA replication machinery.
Polymer-based microparticles are in clinical use mainly for their ability to provide controlled release of peptides and compounds, but they are also being explored for their potential to deliver vaccines and drugs as suspensions directly into mucosal sites. It is generally assumed that uptake is mediated by epithelial M cells, but this is often not directly measured. To study the potential for optimizing M cell uptake of polymer microparticles in vivo, we produced sub-micron size PLGA particles incorporating a recombinant protein. This recombinant protein was produced with or without a c-terminal peptide previously shown to have high affinity binding to Claudin 4, a protein associated with M cell endocytosis. While the PLGA nanoparticles incorporate the protein throughout the matrix, much of the protein was also displayed on the surface, allowing us to take advantage of the binding activity of the targeting peptide. Accordingly, we found that instillation of these nanoparticles into the nasal passages or stomach of mice was found to significantly enhance their uptake by upper airway and intestinal M cells. Our results suggest that a reasonably simple nanoparticle manufacture method can provide insight into developing an effective needle-free delivery system.
Sidestream cigarette smoke solution was previously screened to identify the groups of chemicals in smoke that inhibit growth and angiogenesis in the chick chorioallantoic membrane (CAM). Pyrazine and several pyrazine derivatives were identified as a major chemical group in this screen. In the current study, purified pyrazine and six pyrazine derivatives identified in the screen were tested in dose response experiments to measure their effects on CAM growth, embryo growth, and angiogenesis. Chemicals or control medium were placed on CAMs in ovo on day 5 of development, and results were evaluated on day 6. Of the chemicals tested, pyrazine was the most potent and inhibited both CAM and embryo growth at picomolar doses. 2-Ethylpyrazine and 2,3-dimethylpyrazine were inhibitory at nanomolar doses. Inhibition of growth by pyrazine was correlated with inhibition of DNA synthesis. The pattern of blood vessel development in CAMs was disturbed by micromolar doses of pyrazine and 2,3-dimethylpyrazine. Migration of mesodermal blood vessels to the ectoderm of CAMs and their subsequent differentiation into the capillary plexus was impaired by nanomolar doses of pyrazine. In summary, these data show that pyrazine and some of its derivatives inhibit growth and certain processes important in angiogenesis at very low doses. Since pyrazine and some of its derivatives are considered safe food additives, further toxicological testing of pyrazine, in particular on developing tissues, should be done to fully evaluate its safety as a consumer product additive.
Claudin-4 is an unusual member of the claudin family; in addition to its role in epithelial tight junction barrier function, it is a receptor for the Clostridium perfringens enterotoxin. We have also found that claudin-4 is regulated in mucosal epithelium M cells, both in increased expression of the protein and in redistribution into endocytosis vesicles. Our ongoing studies are studying the potential for developing ligands specific to claudin-4 for targeted delivery of cargo such as proteins and poly(DL-lactide-co-glycolide) nanoparticles to mucosal M cells. Methods for the study of claudin-4 movement within epithelial cells, and delivery of nanoparticles through targeted binding of claudin-4 are described.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.