Chili peppers are used worldwide in foods for their pungent flavor, aroma, and to prolong food spoilage. With capsaicin contents ranging from zero to millions of Scoville heat units, the different varieties offer a wide range of options for people all over the world. In addition to their use in cuisines, chili peppers have been explored for their antimicrobial and antifungal properties. Consequently, research is underway to determine the potential for the application of chili pepper extracts in the food industry in place of artificial preservatives. As new antibiotic-resistant food borne pathogens emerge, the discovery of natural antimicrobials in chili peppers will be invaluable to food scientists. This review goes over some relevant research that has already been done in this area. In addition it lays the ground for the new research that is emerging testing new varieties of chili peppers for nutrient content, flavor profiles, and for antimicrobial activities against numerous human pathogens.
Segmented filamentous bacteria (SFB) are a group of host-adapted, commensal organisms that attach to the ileal epithelium of vertebrate and invertebrate hosts. A genetic relative of the genus Clostridium, these morphologically unique bacteria display a replication and differentiation lifecycle initiated by epithelial tissue binding and filamentation. SFB intimately bind to the surface of absorptive intestinal epithelium without inducing an inflammatory response. Rather, their presence impacts the generation of innate and differentiation of acquired immunity, which impact the clearance of extracellular bacterial or fungal pathogens in the gastrointestinal and respiratory tracts. SFB have recently garnered attention due to their role in promoting adaptive and innate immunity in mice and rats through the differentiation and maturation of Th17 cells in the intestinal tract and production of immunoglobulin A (IgA). SFB are the first commensal bacteria identified that impact the maturation and development of Th17 cells in mice. Recently, microbiome studies have revealed the presence of Candidatus Arthromitus (occasionally designated as Candidatus Savagella), a proposed candidate species of SFB, in higher proportions in higher-performing flocks as compared to matched lower-performing flocks, suggesting that SFB may serve to establish a healthy gut and protect commercial turkeys from pathogens resulting in morbidity and decreased performance. In this review we seek to describe the life cycle, host specificity, and genetic capabilities of SFB, such as bacterial metabolism, and how these factors influence the host immunity and microbiome. Although the role of SFB to induce antigen-specific Th17 cells in poultry is unknown, they may play an important role in modulating the immune response in the intestinal tract to promote resistance against some infectious diseases and promote food-safety. This review demonstrates the importance of studying and further characterizing commensal, host-specific bacteria in food-producing animals and their importance to animal health.
Fruit consumption is universally promoted, yet consumption of fruit remains low in the United States. We conducted a systematic review on pear consumption and health outcomes searching both PubMed and Agricola from 1970 to present. The genus Pyrus L. consists of species of pears cultivated in Europe, parts of Asia, South America, and North America. Like most fruit, pears are concentrated in water and sugar. Pears are high in dietary fiber, containing 6 g per serving. Pears, similar to apples, are concentrated in fructose, and the high fiber and fructose in pears probably explain the laxative properties. Pears contain antioxidants and provide between 27 and 41 mg of phenolics per 100 g. Animal studies with pears suggest that pears may regulate alcohol metabolism, protect against ulcers, and lower plasma lipids. Human feeding studies with pears have not been conducted. In epidemiological studies, pears are combined with all fresh fruits or with apples, because they are most similar in composition. The high content of dietary fiber in pears and their effects on gut health set pears apart from other fruit and deserves study.
Escherichia coli O157:H7 is a human pathogen that was first identified from a foodborne outbreak in 1982, and in the 25 years that followed, many new strains were identified and emerged in numerous outbreaks of human disease. Extensive research has been conducted to identify virulence factor genes involved in the pathogenesis of E. coli O157:H7 and many genome sequences of E. coli O157:H7 strains have become available to the scientific community. Here, we provide a comprehensive overview of the research that has been conducted over the first 25 years to identify 394 known or putative virulence factor genes present in the genomes of E. coli O157:H7 strains. Finally, an examination of the conservation of these 394 virulence factor genes across additional genomes of E. coli O157:H7 is provided which summarizes the first 25 years and 13 genomes of this human pathogen.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.