The contribution of microglia in neurological disorders is emerging as a leading disease driver rather than a consequence of pathology. RNAseT2-deficient leukoencephalopathy is a severe childhood white matter disorder affecting patients in their first year of life and mimicking a cytomegalovirus brain infection. The early
The leukodystrophies are a family of heritable disorders characterised by white matter degeneration, accompanied by variable clinical symptoms including loss of motor function and cognitive decline. Now thought to include over 50 distinct disorders, there are a vast array of mechanisms underlying the pathology of these monogenic conditions and, accordingly, a range of animal models relating to each disorder. While both murine and zebrafish models continue to aid in the development of potential therapies, many of these models fail to truly recapitulate the human condition – thus leaving substantial weaknesses in our understanding of leukodystrophy pathogenesis. Additionally, the heterogeneity in leukodystrophy presentation – both in patients and in vivo models – often results in a narrow focus on single disorders in isolation across much of the literature. Thus, this review aims to synthesise prominent research regarding the most common leukodystrophies in order to provide an overview of key animal models and their utility in developing novel treatments. We begin by discussing the ongoing revolution across the leukodystrophy field following the rise of next generation sequencing, before focusing more extensively on existing animal models from the mouse and zebrafish fields. Finally, we explore how these preclinical models have shaped the development of therapeutic strategies currently in development. We propose future directions for the field and suggest a more critical view of the dogma which has underpinned leukodystrophy research for decades.
Background: Relative blood flow in the two middle cerebral arteries can be measured using functional transcranial Doppler sonography (fTCD) to give an index of lateralisation as participants perform a specific task. Language laterality has mostly been studied with fTCD using a word generation task, but it is not clear whether this is optimal. Methods: Using fTCD, we evaluated a sentence generation task that has shown good reliability and strong left lateralisation in fMRI. We interleaved trials of word generation, sentence generation and list generation and assessed agreement of these tasks in 31 participants (29 right-handers). Results: Although word generation and sentence generation both gave robust left-lateralisation, Bland-Altman analysis showed that these two methods were not equivalent. The comparison list generation task was not systematically lateralised, but nevertheless laterality indices (LIs) from this task were significantly correlated with the other two tasks. Subtracting list generation LI from sentence generation LI did not affect the strength of the laterality index. Conclusions: This was a pre-registered methodological study designed to explore novel approaches to optimising measurement of language lateralisation using fTCD. It confirmed that sentence generation gives robust left lateralisation in most people, but is not equivalent to the classic word generation task. Although list generation does not show left-lateralisation at the group level, the LI on this task was correlated with left-lateralised tasks. This suggests that word and sentence generation involve adding a constant directional bias to an underlying continuum of laterality that is reliable in individuals but not biased in either direction. In future research we suggest that consistency of laterality across tasks might have more functional significance than strength or direction of laterality on any one task.
Background: Relative blood flow in the two middle cerebral arteries can be measured using functional transcranial Doppler sonography (fTCD) to give an index of lateralisation as participants perform a specific task. Language laterality has mostly been studied with fTCD using a word generation task, but it is not clear whether this is optimal. Methods: Using fTCD, we evaluated a sentence generation task that has shown good reliability and strong left lateralisation in fMRI. We interleaved trials of word generation, sentence generation and list generation and assessed agreement of these tasks in 31 participants (29 right-handers). Results: Although word generation and sentence generation both gave robust left-lateralisation, Bland-Altman analysis showed that these two methods were not equivalent. The comparison list generation task was not systematically lateralised, but nevertheless laterality indices (LIs) from this task were significantly correlated with the other two tasks. Subtracting list generation LI from sentence generation LI did not affect the strength of the laterality index. Conclusions: This was a pre-registered methodological study designed to explore novel approaches to optimising measurement of language lateralisation using fTCD. It confirmed that sentence generation gives robust left lateralisation in most people, but is not equivalent to the classic word generation task. Although list generation does not show left-lateralisation at the group level, the LI on this task was correlated with left-lateralised tasks. This suggests that word and sentence generation involve adding a constant directional bias to an underlying continuum of laterality that is reliable in individuals but not biased in either direction. In future research we suggest that consistency of laterality across tasks might have more functional significance than strength or direction of laterality on any one task.
Autoimmune and autoinflammatory diseases are rare but often devastating disorders, underpinned by abnormal immune function. While some autoimmune disorders are thought to be triggered by a burden of infection throughout life, others are thought to be genetic in origin. Among these heritable disorders are the type I interferonopathies, including the rare Mendelian childhood-onset encephalitis Aicardi-Goutières syndrome. Patients with Aicardi Goutières syndrome are born with defects in enzymes responsible for nucleic acid metabolism and develop devastating white matter abnormalities resembling congenital cytomegalovirus brain infection. In some cases, common infections preceded the onset of the disease, suggesting immune stimulation as a potential trigger. Thus, the antiviral immune response has been actively studied in an attempt to provide clues on the pathological mechanisms and inform on the development of therapies. Animal models have been fundamental in deciphering biological mechanisms in human health and disease. Multiple rodent and zebrafish models are available to study type I interferonopathies, which have advanced our understanding of the human disease by identifying key pathological pathways and cellular drivers. However, striking differences in phenotype have also emerged between these vertebrate models, with zebrafish models recapitulating key features of the human neuropathology often lacking in rodents. In this review, we compare rodent and zebrafish models, and summarize how they have advanced our understanding of the pathological mechanisms in Aicardi Goutières syndrome and similar disorders. We highlight recent discoveries on the impact of laboratory environments on immune stimulation and how this may inform the differences in pathological severity between mouse and zebrafish models of type I interferonopathies. Understanding how these differences arise will inform the improvement of animal disease modeling to accelerate progress in the development of therapies for these devastating childhood disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.