Prostate cancer is the most commonly diagnosed noncutaneous neoplasm and second most common cause of cancerrelated mortality in western men. To investigate the mechanisms of prostate cancer development and progression, we did expression profiling of human prostate cancer and benign tissues. We show that the SOX4 is overexpressed in prostate tumor samples compared with benign tissues by microarray analysis, real-time PCR, and immunohistochemistry. We also show that SOX4 expression is highly correlated with Gleason score at the mRNA and protein level using tissue microarrays. Genes affected by SOX4 expression were also identified, including BCL10, CSF1, and NcoA4/ARA70. TLE-1 and BBC3/PUMA were identified as direct targets of SOX4. Silencing of SOX4 by small interfering RNA transfection induced apoptosis of prostate cancer cells, suggesting that SOX4 could be a therapeutic target for prostate cancer. Stable transfection of SOX4 into nontransformed prostate cells enabled colony formation in soft agar, suggesting that, in the proper cellular context, SOX4 can be a transforming oncogene. (Cancer Res 2006; 66(8): 4011-9)
Breast cancer survivors are at risk for chronic psychosocial distress that may alter activity of the hypothalamic-pituitary-adrenal axis, resulting in aberrant regulation of cortisol secretion and increased risk of immune dysfunction and cancer progression. Regular yoga practice may be a low-risk, cost-effective way to improve psychosocial functioning, fatigue, and regulation of cortisol secretion in breast cancer survivors. These findings require validation with a larger randomized study.
NADPH oxidases have recently been shown to contribute to the pathogenesis of hypertension. The development of specific inhibitors of these enzymes has focused attention on their potential therapeutic use in hypertensive disease. Two of the most specific inhibitors, gp91ds-tat and apocynin, have been shown to decrease blood pressure in animal models of hypertension. Other inhibitors, including diphenylene iodonium, aminoethyl benzenesulfono fluoride, S17834, PR39, protein kinase C inhibitors, and VAS2870, have shown promise in vitro, but their in vivo specificity, pharmacokinetics, and effectiveness in hypertension remains to be determined. Of importance, the currently available antihypertensive agents angiotensin-converting enzyme inhibitors and angiotensin receptor blockers also effectively inhibit NADPH oxidase activation. Similarly, the cholesterol-lowering agents, statins, have been shown to attenuate NADPH oxidase activation. Although, antioxidants act to scavenge the reactive oxygen species produced by these enzymes, their effectiveness is limited. Targeting NADPH homologues may have a distinct advantage over current therapies because it would specifically prevent the pathophysiological formation of reactive oxygen species that contributes to hypertension.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.