Improving the accuracy of estimates of forest carbon exchange is a central priority for understanding ecosystem response to increased atmospheric CO levels and improving carbon cycle modelling. However, the spatially continuous parameterization of photosynthetic capacity (Vcmax) at global scales and appropriate temporal intervals within terrestrial biosphere models (TBMs) remains unresolved. This research investigates the use of biochemical parameters for modelling leaf photosynthetic capacity within a deciduous forest. Particular attention is given to the impacts of seasonality on both leaf biophysical variables and physiological processes, and their interdependent relationships. Four deciduous tree species were sampled across three growing seasons (2013-2015), approximately every 10 days for leaf chlorophyll content (Chl ) and canopy structure. Leaf nitrogen (N ) was also measured during 2014. Leaf photosynthesis was measured during 2014-2015 using a Li-6400 gas-exchange system, with A-Ci curves to model Vcmax. Results showed that seasonality and variations between species resulted in weak relationships between Vcmax normalized to 25°C (Vcmax25) and N (R = 0.62, P < 0.001), whereas Chl demonstrated a much stronger correlation with Vcmax25 (R = 0.78, P < 0.001). The relationship between Chl and N was also weak (R = 0.47, P < 0.001), possibly due to the dynamic partitioning of nitrogen, between and within photosynthetic and nonphotosynthetic fractions. The spatial and temporal variability of Vcmax25 was mapped using Landsat TM/ETM satellite data across the forest site, using physical models to derive Chl . TBMs largely treat photosynthetic parameters as either fixed constants or varying according to leaf nitrogen content. This research challenges assumptions that simple N -Vcmax25 relationships can reliably be used to constrain photosynthetic capacity in TBMs, even within the same plant functional type. It is suggested that Chl provides a more accurate, direct proxy for Vcmax25 and is also more easily retrievable from satellite data. These results have important implications for carbon modelling within deciduous ecosystems.
Leaf chlorophyll is central to the exchange of carbon, water and energy between the biosphere and the atmosphere, and to the functioning of terrestrial ecosystems. This paper presents the first spatially continuous view of terrestrial leaf chlorophyll content (ChlLeaf) across a global scale. Weekly maps of ChlLeaf were produced from ENIVSAT MERIS full resolution (300 m) satellite data with a two-stage physically-based radiative transfer modelling approach. Firstly, leaf-level reflectance was derived from top-of-canopy satellite reflectance observations using 4-Scale and SAIL canopy radiative transfer models 3 for woody and non-woody vegetation, respectively. Secondly, the modelled leaf-level reflectance was used in the PROSPECT leaf-level radiative transfer model to derive ChlLeaf. The ChlLeaf retrieval algorithm was validated with measured ChlLeaf data from sample measurements at field locations, and covering six plant functional types (PFTs). Modelled results show strong relationships with field measurements, particularly for deciduous broadleaf forests (R 2 = 0.67; RMSE = 9.25 µg cm -2 ; p<0.001), croplands (R 2 = 0.41; RMSE = 13.18 µg cm -2 ; p<0.001) and evergreen needleleaf forests (R 2 = 0.47; RMSE = 10.63 µg cm -2 ; p<0.001). When the modelled results from all PFTs were considered together, the overall relationship with measured ChlLeaf remained good (R 2 = 0.47, RMSE = 10.79 µg cm -2 ; p<0.001).This result was an improvement on the relationship between measured ChlLeaf and a commonly used chlorophyll-sensitive spectral vegetation index; the MERIS Terrestrial Chlorophyll Index (MTCI; R 2 = 0.27, p<0.001). The global maps show large temporal and spatial variability in ChlLeaf, with evergreen broadleaf forests presenting the highest leaf chlorophyll values with global annual median of 54.4 µg cm -2 . Distinct seasonal ChlLeaf phenologies are also visible, particularly in deciduous plant forms, associated with budburst and crop growth, and leaf senescence. It is anticipated that this global ChlLeaf product will make an important step towards the explicit consideration of leaf-level biochemistry in terrestrial water, energy and carbon cycle modelling.
Evapotranspiration (ET) is commonly estimated using the Penman‐Monteith equation, which assumes that the plant canopy is a big leaf (BL) and the water flux from vegetation is regulated by canopy stomatal conductance (Gs). However, BL has been found to be unsuitable for terrestrial biosphere models built on the carbon‐water coupling principle because it fails to capture daily variations of gross primary productivity (GPP). A two‐big‐leaf scheme (TBL) and a two‐leaf scheme (TL) that stratify a canopy into sunlit and shaded leaves have been developed to address this issue. However, there is a lack of comparison of these upscaling schemes for ET estimation, especially on the difference between TBL and TL. We find that TL shows strong performance (r2 = 0.71, root‐mean‐square error = 0.05 mm/h) in estimating ET at nine eddy covariance towers in Canada. BL simulates lower annual ET and GPP than TL and TBL. The biases of estimated ET and GPP increase with leaf area index (LAI) in BL and TBL, and the biases of TL show no trends with LAI. BL miscalculates the portions of light‐saturated and light‐unsaturated leaves in the canopy, incurring negative biases in its flux estimation. TBL and TL showed improved yet different GPP and ET estimations. This difference is attributed to the lower Gs and intercellular CO2 concentration simulated in TBL compared to their counterparts in TL. We suggest to use TL for ET modeling to avoid the uncertainty propagated from the artificial upscaling of leaf‐level processes to the canopy scale in BL and TBL.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.