Animal manure is applied to agricultural land as a means to provide crop nutrients. However, animal manure often contains antibiotics as a result of extensive therapeutic and subtherapeutic use in livestock production. The objective of this study was to evaluate plant uptake of a sulfonamide-class antibiotic, sulfamethazine, in corn (Zea mays L.), lettuce (Lactuca sativa L.), and potato (Solanum tuberosum L.) grown in a manure-amended soil. The treatments were 0, 50, and 100 microg sulfamethazine mL(-1) manure applied at a rate of 56 000 L ha(-1). Results from the 45-d greenhouse experiment showed that sulfamethazine was taken up by all three crops, with concentrations in plant tissue ranging from 0.1 to 1.2 mg kg(-1) dry weight. Sulfamethazine concentrations in plant tissue increased with corresponding increase of sulfamethazine in manure. Highest plant tissue concentrations were found in corn and lettuce, followed by potato. Total accumulation of sulfamethazine in plant tissue after 45 d of growth was less than 0.1% of the amount applied to soil in manure. These results raise potential human health concerns of consuming low levels of antibiotics from produce grown on manure-amended soils.
On-farm manure management practices, such as composting, may provide a practical and economical option for reducing antibiotic concentrations in manure before land application, thereby minimizing the potential for environmental contamination. The objective of this study was to quantify degradation of chlortetracycline, monensin, sulfamethazine, and tylosin in spiked turkey (Meleagris gallopavo) litter during composting. Three manure composting treatments were evaluated: a control treatment (manure pile with no disturbance or adjustments after initial mixing), a managed compost pile (weekly mixing and moisture content adjustments), and vessel composting. Despite significant differences in temperature, mass, and nutrient losses between the composting treatments and the control, there was no difference in antibiotic degradation among the treatments. Chlortetracycline concentrations declined rapidly during composting, whereas monensin and tylosin concentrations declined gradually in all three treatments. There was no degradation of sulfamethazine in any of treatments. At the conclusion of the composting period (22-35 d), there was >99% reduction in chlortetracycline, whereas monensin and tylosin reduction ranged from 54 to 76% in all three treatments. Assuming first-order decay, the half-lives for chlortetracycline, monensin, and tylosin were 1, 17, and 19 d, respectively. These data suggest that managed compositing in a manure pile or in a vessel is not better than the control treatment in degrading certain antibiotics in manure. Therefore, low-level manure management, such as stockpiling, after an initial adjustment of water content may be a practical and economical option for livestock producers in reducing antibiotic levels in manure before land application.
A 3-yr field study quantified leaching and runoff losses of antibiotics from land application of liquid hog (chlortetracycline and tylosin) and solid beef (chlortetracycline, monensin, and tylosin) manures under chisel plowing and no-tillage systems. The study was conducted in southwestern Wisconsin, a karst area with steep, shallow, macroporous soils. Relative mass losses of chlortetracycline, monensin, and tylosin were <5% of the total amount applied with manure. Chlortetracycline was only detected in runoff, whereas monensin and tylosin were detected in leachate and runoff. Highest concentrations of monensin and tylosin in the leachate were 40.9 and 1.2 microg L(-1), respectively. Highest chlortetracycline, monensin, and tylosin concentrations in runoff were 0.5, 57.5, and 6.0 microg L(-1), respectively. For all three antibiotics, >90% of detections and 99% of losses occurred during the non-growing season due to fall manure application and slow degradation of antibiotics at cold temperatures. During years of high snowmelt, runoff accounted for nearly 100% of antibiotic losses, whereas during years of minimal snowmelt, runoff accounted for approximately 40% of antibiotic losses. Antibiotic losses were generally higher from the no-tillage compared with chisel plow treatment due to greater water percolation as a result of macroporosity and greater runoff due to lack of surface roughness in the no-tillage plots during the non-growing season. The results from this study suggest that small quantities of dissolved antibiotics could potentially reach surface and ground waters in the Upper Midwestern USA from manure-amended shallow macroporous soils underlain with fractured bedrock.
Sediment and phosphorus (P) transport from the Minnesota River Basin to Lake Pepin on the upper Mississippi River has garnered much attention in recent years. However, there is lack of data on the extent of sediment and P contributions from riverbanks vis-à-vis uplands and ravines. Using two light detection and ranging (lidar) data sets taken in 2005 and 2009, a study was undertaken to quantify sediment and associated P losses from riverbanks in Blue Earth County, Minnesota. Volume change in river valleys as a result of bank erosion amounted to 1.71 million m over 4 yr. Volume change closely followed the trend: the Blue Earth River > the Minnesota River at the county's northern edge > the Le Sueur River > the Maple River > the Watonwan River > the Big Cobb River > Perch Creek > Little Cobb River. Using fine sediment content (silt + clay) and bulk density of 37 bank samples representing three parent materials, we estimate bank erosion contributions of 48 to 79% of the measured total suspended solids at the mouth of the Blue Earth and the Le Sueur rivers. Corresponding soluble P and total P contributions ranged from 0.13 to 0.20% and 40 to 49%, respectively. Although tall banks (>3 m high) accounted for 33% of the total length and 63% of the total area, they accounted for 75% of the volume change in river valleys. We conclude that multitemporal lidar data sets are useful in estimating bank erosion and associated P contributions over large scales, and for riverbanks that are not readily accessible for conventional surveying equipment.
Manure management is a major concern in livestock production systems. Although historically the primary concerns have been nutrients and pathogens, manure is also a source of emerging contaminants, such as antibiotics, to the environment. There is a growing concern that antibiotics in manure are reaching surface and ground waters and contributing to the development and spread of antibiotic resistance in the environment. One such pathway is through leaching and runoff from manure stockpiles. In this study, we quantified chlortetracycline, monensin, and tylosin losses in runoff from beef manure stockpiles during two separate but consecutive experiments representing different weather conditions (i.e., temperature and precipitation amount and form). Concentrations of chlortetracycline, monensin, and tylosin in runoff were positively correlated with initial concentrations of antibiotics in manure. The highest concentrations of chlortetracycline, monensin, and tylosin in runoff were 210, 3175, and 2544 microg L(-1), respectively. Relative antibiotic losses were primarily a function of water losses. In the experiment that had higher runoff water losses, antibiotic losses ranged from 1.2 to 1.8% of total extractable antibiotics in manure. In the experiment with lower runoff water losses, antibiotic losses varied from 0.2 to 0.6% of the total extractable antibiotics in manure. Manure analysis over time suggests that in situ degradation is an important mechanism for antibiotic losses. Degradation losses during manure stockpiling may exceed cumulative losses from runoff events. Storing manure in protected (i.e., covered) facilities could reduce the risk of aquatic contamination associated with manure stockpiling and other outdoor manure management practices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.