The tomato-potato psyllid, Bactericera cockerelli (Sulc) (Hemiptera: Triozidae), was recently shown to be a vector of “Candidatus Liberibacter solanacearum” (Lso), a phloem-limited bacterium that is the putative causal agent of “zebra chip” in potato and unnamed diseases in other solanaceous species. Despite its importance, very little is known about B. cockerelli stylet probing behaviors that control transmission of Lso to its host plants. Herein, we report the first study characterizing the electrical penetration graph waveforms representing stylet penetration behaviors of the B. cockerelli feeding on potato. Waveforms produced by adult B. cockerelli on potato were also correlated using light microscopy of salivary sheath termini in plant tissue after probes were artificially terminated during the identified waveforms. In addition, behavioral activities were inferred based on electrical origins of waveforms as well as similarities in waveform appearances with those of other psyllids, aphids, and whiteflies. Adult B. cockerelli produced six waveform families and four types, which represent the following proposed biological meanings: family A, initial penetration and sheath salivation; family B, penetration of epidermal cells; family C, secretion of most of the salivary sheath and stylet pathway in mesophyll and parenchyma, with two types, C1 and C2, of unknown meaning; family D, initial contact with phloem cells; family E, activities in phloem cells, with two types, El, putative phloem salivation, and E2, phloem sap ingestion; and family G, xylem ingestion. In addition, a previously unreported variant of waveform G was characterized and correlated with applied signal type. Variation in D and G waveform appearances was correlated with polarity, type, and magnitude of applied signal. Results suggest that active phloem sap ingestion during E2 may play a critical role in acquisition of Lso bacterial cells. E1 may be important in inoculation of the bacterium into phloem sieve elements because it may represent salivation into phloem sieve elements. Analysis of B. cockerelli waveforms could lead to faster development of resistant host plant varieties, strengthen integrated pest management strategies by incorporating alternative plant hosts, and maximize the efficiency of pesticides.
Many insects and other arthropods communicate using plant‐borne vibrational signals. Vibration transmission along plant stems imposes a frequency filter on signals, and may cause signal degradation from reflected waves. Furthermore, different plant species and plant parts can differ in their transmission properties. This variability in the communication channel may constrain the reliability of signals, with important consequences for the evolution of vibrational communication systems, as well as for researchers studying signal variation at an individual, population, or species level. In this study we estimate the magnitude of substrate‐related variation in the mate advertisement signals of a treehopper (Hemiptera: Membracidae: Umbonia crassicornis). We used laser vibrometry to record the signals produced by 25 adult males on two different plant species, one host and one non‐host. We recorded male signals on two plants per species; within each plant, signals were recorded simultaneously at two distances. We measured three spectral characteristics (dominant frequency, relative amplitude of the signals’ high and low frequency components, frequency at the end of the signal) and two temporal characteristics (signal duration and click repetition rate). Spectral characteristics were influenced by the distance at which the signal was recorded, and this influence varied among plant species and individuals. Temporal characteristics were less influenced, although signal length was influenced by distance, an effect that varied among individual plants. Overall, the magnitude of the effects was small. Furthermore, there was significant within‐individual repeatability of almost all signal traits across different plant substrates. Signal characteristics were thus reliably associated with individuals, even when they signaled on different plants.
Diaphorina citri is a major pest of citrus because it transmits Candidatus Liberibacter asiaticus, a phloem-limited bacterium that putatively causes Huanglongbing (HLB). The disease moves slowly through a tree, and the vector facilitates further within-tree movement via transmission of the pathogen. However, this only happens when D. citri stylets contact the phloem, to inoculate bacteria during phloem salivation and acquire bacteria during phloem sap ingestion. Behavioral changes in D. citri associated with different plant parts would affect how long it takes to reach phloem and how long the psyllids stays in phloem to ingest, thereby influencing the risk of disease spread. D. citri feeding was recorded on the abaxial and adaxial surfaces of mature and immature citrus leaves. Adults in the field can be found on these surfaces at all times of year. On abaxial surface of immature leaves, phloem salivation would occur after 11 h on average, but rarely as soon as 0.56 h. The corresponding values on mature leaves were 16 and 2.7. In general, psyllids spent more time ingesting phloem sap on immature leaves than on mature leaves. Psyllids on abaxial surfaces spent more time ingesting from phloem, though the strength of this effect was less than for immature versus mature leaves. In contrast, xylem ingestion increased on mature leaves compared with young. The biological differences that could produce this outcome are discussed. The results discussed herein are of relevance to further studies on the efficacy of an insecticide to act quickly enough to prevent pathogen transmission.Electronic supplementary materialThe online version of this article (10.1007/s10905-018-9666-0) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.