Abstract.-Fossil bone microanalyses reveal the ontogenetic histories of extinct tetrapods, but incomplete fossil records often result in small sample sets lacking statistical strength. In contrast, a histological sample of 50 tibiae of the hadrosaurid dinosaur Maiasaura peeblesorum allows predictions of annual growth and ecological interpretations based on more histologic data than any previous large sample study. Tibia length correlates well (R 2 > 0.9) with diaphyseal circumference, cortical area, and bone wall thickness, thereby allowing longitudinal predictions of annual body size increases based on growth mark circumference measurements. With an avian level apposition rate of 86.4 μm/day, Maiasaura achieved over half of asymptotic tibia diaphyseal circumference within its first year. Mortality rate for the first year was 89.9% but a seven year period of peak performance followed, when survivorship (mean mortality rate = 12.7%) was highest. During the third year of life, Maiasaura attained 36% (x = 1260 kg) of asymptotic body mass, growth rate was decelerating (18.2 μm/day), cortical vascular orientation changed, and mortality rate briefly increased. These transitions may indicate onset of sexual maturity and corresponding reallocation of resources to reproduction. Skeletal maturity and senescence occurred after 8 years, at which point the mean mortality rate increased to 44.4%. Compared with Alligator, an extant relative, Maiasaura exhibits rapid cortical increase early in ontogeny, while Alligator cortical growth is much lower and protracted throughout ontogeny. Our life history synthesis of Maiasaura utilizes the largest histological sample size for any extinct tetrapod species thus far, demonstrating how large sample microanalyses strengthen paleobiological interpretations.Holly N. Woodward*. Museum of the Rockies,
Bone microanalyses of extant vertebrates provide a necessary framework from which to form hypotheses regarding the growth and skeletochronology of extinct taxa. Here, we describe the bone microstructure and quantify the histovariability of appendicular elements and osteoderms from three juvenile American alligators (Alligator mississippiensis) to assess growth mark and tissue organization within and amongst individuals, with the intention of validating paleohistological interpretations. Results confirm previous observations that lamellar and parallel fibered tissue organization are typical of crocodylians, and also that crocodylians are capable of forming woven tissue for brief periods. Tissue organization and growth mark count varies across individual skeletal elements and reveal that the femur, tibia, and humerus had the highest annual apposition rates in each individual. Cyclical growth mark count also varies intraskeletally, but data suggest these inconsistencies are due to differing medullary cavity expansion rates. There was no appreciable difference in either diaphyseal circumference or cyclical growth mark circumferences between left and right element pairs from an individual if diaphyses were sampled from roughly the same location. The considerable intraskeletal data obtained here provide validation for long-held paleohistology assumptions, but because medullary expansion, cyclical growth mark formation, and variable intraskeletal growth rates are skeletal features found in tetrapod taxa living or extinct, the validations presented herein should be considered during any tetrapod bone microanalysis.
Sauropod dinosaurs were the largest terrestrial animals and their growth rates remain a subject of debate. By counting growth lines in histologic sections and relating bone length to body mass, it has been estimated that Apatosaurus attained its adult body mass of about 25,000 kg in as little as 15 years, with a maximum growth rate over 5000 kg/yr. This rate exceeds that projected for a precocial bird or eutherian mammal of comparable estimated body mass. An alternative meth od of estimating limb length and body mass for each growth line, and fitting the resulting age/ mass data to the von Bertalanffy growth equation, yields a revised growth curve suggesting that Apatosaurus adult mass was reached by 70 years with a maximum growth rate of 520 kg/yr. This alternative method for growth rate determination can also be applied to histological studies of other sauropods. At only about half the mass of Apatosaurus, Janenschia took between 20 and 30 years to attain its adult size (over 14,000 kg). This result is supported by independent evidence of estimated bone apposition rates. Despite having an adult body mass greater than Apatosaurus, the titanosaurid Alamosaurus attained a mass over 32,000 kg within 45 years a~hd a maximum growth rate of 1000 kg/yr. Titanosaurids may have been the fastest growing of all sauropods. Even so, sauropod growth rate estimates produced using the von Bertalanffy equation fall between those projected for reptiles and those for precocial birds of equivalent projected body mass. These results are comparable to those found for smaller dinosaurs, and suggest that sauropods grew at rates similar to other dinosaurs in spite of their great size.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.