Exposure to chlorine gas (Cl2) causes occupational asthma that we hypothesized occurs through the induction of airway inflammation and airway hyperresponsiveness by oxidative damage. Respiratory mechanics and airway responsiveness to methacholine were assessed in A/J mice 24 hours after a 5-minute exposure to 100, 200, 400, or 800 ppm Cl2 and 2 and 7 days after inhalation of 400 ppm Cl2. Airway responsiveness was higher 24 hours after 400 and 800 ppm Cl2. Responsiveness after inhalation of 400 ppm Cl2 returned to normal by 2 days but was again elevated at 7 days. Airway epithelial loss, patchy alveolar damage, proteinaceous exudates, and inflammatory cells within alveolar walls were observed in animals exposed to 800 ppm Cl2. Macrophages, granulocytes, epithelial cells, and nitrate/nitrite levels increased in lung lavage fluid. Increased inducible nitric oxide synthase expression and oxidation of lung proteins were observed. Epithelial cells and alveolar macrophages from mice exposed to 800 ppm Cl2 stained for 3-nitrotyrosine residues. Inhibition of inducible nitric oxide synthase with 1400W (1 mg/kg) abrogated the Cl2-induced changes in responsiveness. We conclude that chlorine exposure causes functional and pathological changes in the airways associated with oxidative stress. Inducible nitric oxide synthase is involved in the induction of changes in responsiveness to methacholine.
The cerebellum of mormyrid electric fish is large and unusually regular in its histological structure. We have examined the morphology of cellular elements in the central lobes of the mormyrid cerebellum. We have used intracellular injection of biocytin to determine the morphology of cells with somas in the cortex, and we have used extracellular placement of anterograde tracers in the inferior olive to label climbing fibers. Our results confirm previous Golgi studies and extend them by providing a more complete description of axonal trajectories. Most Purkinje cells in mormyrids and other actinopterygian fishes are interneurons that terminate locally in the cortex on efferent neurons that are equivalent to cerebellar nucleus cells in mammals. We confirm the markedly sagittal distribution of the fan-like dendrites of Purkinje cells, efferent cells, and molecular layer interneurons. We show that Purkinje cell axons extend further than was previously thought in the sagittal plane. We show that climbing fibers are distributed in narrow sagittal strips and that these fibers terminate exclusively in the ganglionic layer below the molecular layer where parallel fibers terminate. Our results together with those of others show that the central lobes of the mormyrid cerebellum, similar to the mammalian cerebellum, are composed of sagittally oriented modules made up of Purkinje cells, climbing fibers, molecular layer interneurons, and cerebellar efferent cells (cerebellar nucleus cells in mammals) that Purkinje cells inhibit. This modular organization is more apparent and more sharply defined in the mormyrid than in the mammal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.