Wolves, coyotes, and other canids are members of a diverse genus of top predators of considerable conservation and management interest. Canid howls are long-range communication signals, used both for territorial defence and group cohesion. Previous studies have shown that howls can encode individual and group identity. However, no comprehensive study has investigated the nature of variation in canid howls across the wide range of species. We analysed a database of over 2000 howls recorded from 13 different canid species and subspecies. We applied a quantitative similarity measure to compare the modulation pattern in howls from different populations, and then applied an unsupervised clustering algorithm to group the howls into natural units of distinct howl types. We found that different species and subspecies showed markedly different use of howl types, indicating that howl modulation is not arbitrary, but can be used to distinguish one population from another. We give an example of the conservation importance of these findings by comparing the howls of the critically endangered red wolves to those of sympatric coyotes Canis latrans, with whom red wolves may hybridise, potentially compromising reintroduced red wolf populations. We believe that quantitative cross-species comparisons such as these can provide important understanding of the nature and use of communication in socially cooperative species, as well as support conservation and management of wolf populations.
Vocal divergence within species often corresponds to morphological, environmental, and genetic differences between populations. Wolf howls are long-range signals that encode individual, group, and subspecies differences, yet the factors that may drive this variation are poorly understood. Furthermore, the taxonomic division within the Canis genus remains contended and additional data are required to clarify the position of the Himalayan, North African, and Indian wolves within Canis lupus. We recorded 451 howls from the 3 most basal wolf lineages—Himalayan C. lupus chanco—Himalayan haplotype, North African C. lupus lupaster, and Indian C. lupus pallipes wolves—and present a howl acoustic description within each clade. With an additional 619 howls from 7 Holarctic subspecies, we used a random forest classifier and principal component analysis on 9 acoustic parameters to assess whether Himalayan, North African, and Indian wolf howls exhibit acoustic differences compared to each other and Holarctic wolf howls. Generally, both the North African and Indian wolf howls exhibited high mean fundamental frequency (F0) and short duration compared to the Holarctic clade. In contrast, the Himalayan wolf howls typically had lower mean F0, unmodulated frequencies, and short howls compared to Holarctic wolf howls. The Himalayan and North African wolves had the most acoustically distinct howls and differed significantly from each other and to the Holarctic wolves. Along with the influence of body size and environmental differences, these results suggest that genetic divergence and/or geographic distance may play an important role in understanding howl variation across subspecies.
Humans possess intuitive associations linking certain non-redundant features of stimuli—e.g. high-pitched sounds with small object size (or similarly,
low
-pitched sounds with
large
object size). This phenomenon, known as crossmodal correspondence, has been identified in humans across multiple different senses. There is some evidence that non-human animals also form crossmodal correspondences, but the known examples are mostly limited to the associations between the pitch of vocalizations and the size of callers. To investigate whether domestic dogs, like humans, show abstract pitch-size association, we first trained dogs to approach and touch an object after hearing a sound emanating from it. Subsequently, we repeated the task but presented dogs with
two
objects differing in size, only one of which was playing a sound. The sound was either high or low pitched, thereby creating trials that were either congruent (high pitch from small object; low pitch from large objects) or incongruent (the reverse). We found that dogs reacted faster on congruent versus incongruent trials. Moreover, their accuracy was at chance on incongruent trials, but significantly above chance for congruent trials. Our results suggest that non-human animals show abstract pitch sound correspondences, indicating these correspondences may not be uniquely human but rather a sensory processing feature shared by other species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.