Parasitic exploitation occurs within and between a wide variety of taxa in a plethora of diverse contexts. Theoretical and empirical analyses indicate that parasitic exploitation can generate substantial genetic and phenotypic polymorphism within species. Under some circumstances, parasitic exploitation may also be an important factor causing reproductive isolation and promoting speciation. Here we review research relevant to the relationship between parasitic exploitation, within species-polymorphism, and speciation in some of the major arenas in which such exploitation has been studied. This includes research on the vertebrate major histocompatibility loci, plant-pathogen interactions, the evolution of sexual reproduction, intragenomic conflict, sexual conflict, kin mimicry and social parasitism, tropical forest diversity and the evolution of language. We conclude by discussing some of the issues raised by comparing the effect of parasitic exploitation on polymorphism and speciation in different contexts.
Versican, an extracellular matrix proteoglycan, has been implicated in limb development and is expressed in precartilage mesenchymal condensations. However, studies have lacked precise spatial and temporal investigation of versican localization during skeletogenesis and its relationship to patterning of muscle and nerve during mammalian limb development. The transgenic mouse line hdf (heart defect), which bears a lacZ reporter construct disrupting Cspg2 encoding versican, allowed ready detection of hdf transgene expression through histochemical analysis. Hdf transgene expression in whole mount heterozygous embryos and localization of versican relative to cartilage, muscle, and nerve tissues in paraffin-embedded limb sections of wild-type embryos from 10.5-14 days postcoitum were evaluated by lacZ histochemistry, immunohistochemistry, and in situ hybridization. Versican was localized within precartilage condensations and nascent cartilages with expression diminishing during maturation of the cartilage model at later time points. Interestingly, versican remained highly expressed in developing synovial joint interzones, suggesting potential function for versican in joint morphogenesis. Isolated myoblasts, incipient skeletal muscle masses, and neurites were not present in areas of strong versican expression within the developing limb. Versican-expressing tissues may reserve space for the future limb skeleton and developing joints and may aid in patterning of muscle and nerve by deterring muscle migration and innervation into these regions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.