The quantum molecule consisting of three quantum dots that forms a triangle with its centers is studied. The electron wave function in the nanosystem is written using the linear combination of orbital quantum wells. The dispersion equation for numerical calculations of the electron stationary states in a quantum molecule is found. A numerical calculation of the electron energy spectrum in the molecule formed by three quantum dots of a spherical shape is carried out. The influence of the nanocrystal size, the distance between them and the symmetry of the quantum molecule on the electron energy spectrum is studied. The cases of symmetry of an equilateral and an isosceles triangle are considered.
In the paper a quasi-one-dimensional three-layer nanowire (NW) with an intermediate layer at the separation boundaries is described by the Kronig-Penney model with δ-function potentials. The distance between the last or supreme atoms of the intermediate layer is a parameter of the problem and ranges from zero to two lattice parameters of crystals. A precise solution is obtained for the quantum-mechanical reflection coefficient R which makes it possible to determine the dependence of the factor on a wave vector, widths of an intermediate layer and a monolayer of the nanoheterostructure. The specific calculations are performed for the GaAs/AlAs/GaAs and AlAs/GaAs/AlAS nanowires. The comparison of the reflection coefficients in the envelope-function approximation and in the effective mass method is performed at small values of a wave vector. It is shown that similar results can be received using the refined procedure, originally proposed by Harrison, with appropriately taken parameters. For the cosinusoidal dependence of the energy on a wave vector which arises in the Kronig-Penney model within the framework of the S-matrix scattering method, we determined the binding states energy for a AlAs/GaAs/AlAs quantum well wire.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.