Enterotoxigenic Escherichia coli (ETEC) is one of the leading causes of diarrhea in children globally, and thus suitable vaccines are desired. Antigen display on lactic acid bacteria is a reliable approach for efficient oral vaccination and preventing bowel diseases. To develop an oral vaccine against ETEC, the gene of the binding domain from heat-labile toxin (LTB), a key ETEC virulence factor, was codon-optimized and cloned into a construct containing a signal peptide and an anchor for display on L. lactis. Bioinformatics analysis showed a codon adaptation index of 0.95 for the codon-optimized gene. Cell surface expression of LTB was confirmed by transmission electron microscopy and blotting. White New Zealand rabbits were immunized per os (PO) with the recombinant L. lactis, and the antibody titers were assayed with ELISA. In vitro neutralization assay was performed using mouse adrenal tumor cells and rabbit ileal loop test was performed as the in vivo assay. ELISA results indicated that oral administration of the engineered L. lactis elicited a significant production of IgA in the intestine. In vitro neutralization assay showed that the effect of the toxin could be neutralized with 500 µg/ml of IgG isolated from the oral vaccine group. Furthermore, the dose of ETEC causing fluid accumulation in the ileal loop test showed a tenfold increase in rabbits immunized with either recombinant L. lactis or LTB protein compared to other groups. Our results imply that recombinant L. lactis could potentially be an effective live oral vaccine against ETEC toxicity.
Natural mineral water which todays attract more trend rather that tap water in urban societies and has been appreciated for high level hygiene. This study considered microbiological quality of packaged natural mineral water marketed in Lorestan province where 35 samples were purchased randomly, were tested for presence of different indicator microorganisms. 31.42% out of 35 samples didn't fulfilled standard condition in terms of unacceptable total Coliforms count while E. coli, Staphylococcal, Pseudomonas aeruginosa, Streptococcal, Sulfite-reducing Clostridia counts weren't observed. Those results revealed the necessity of more control on treatment and filling process which might be the most probable steps for sanitation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.