Being designated to protect other tissues, skin is the first and largest human body organ to be injured and for this reason, it is accredited with a high capacity for self-repairing. However, in the case of profound lesions or large surface loss, the natural wound healing process may be ineffective or insufficient, leading to detrimental and painful conditions that require repair adjuvants and tissue substitutes. In addition to the conventional wound care options, biodegradable polymers, both synthetic and biologic origin, are gaining increased importance for their high biocompatibility, biodegradation, and bioactive properties, such as antimicrobial, immunomodulatory, cell proliferative, and angiogenic. To create a microenvironment suitable for the healing process, a key property is the ability of a polymer to be spun into submicrometric fibers (e.g., via electrospinning), since they mimic the fibrous extracellular matrix and can support neo- tissue growth. A number of biodegradable polymers used in the biomedical sector comply with the definition of bio-based polymers (known also as biopolymers), which are recently being used in other industrial sectors for reducing the material and energy impact on the environment, as they are derived from renewable biological resources. In this review, after a description of the fundamental concepts of wound healing, with emphasis on advanced wound dressings, the recent developments of bio-based natural and synthetic electrospun structures for efficient wound healing applications are highlighted and discussed. This review aims to improve awareness on the use of bio-based polymers in medical devices.
An electrospinning technique based on the use of two oppositely charged nozzles was applied to fabricate continuous twisted yarns of poly(L-lactide) (PLLA) nano/micro fibers. In this study, the effect of solvent on the electrospinning of PLLA fibrous yarns was investigated. For this purpose, yarns were electrospun using chloroform, dichloromethane or 2,2,2-trifluoroethanol as solvents at a PLLA concentration of 7 wt%. The analysis of the morphology, diameter, crystallinity and mechanical properties of electrospun yarns revealed that the vapor pressure of the solvent plays an important role. Whereas the fiber diameter decreased, the crystallinity of the fibers increased using a solvent with lower vapor pressure. In addition, mechanical properties (e.g., tensile strength and modulus) revealed that the yarns composed of fibers with smaller diameters showed higher tensile strength and modulus. In summary, fine-tuning solvent properties resulted in a modulation of fiber diameter, crystallinity, and thereby yarn mechanical properties, and are important factors to consider in the fabrication and application of electrospun yarns.
In this study, nanofiber meshes were produced from aqueous mixtures of poly(vinyl alcohol) (PVA) and honey via electrospinning. The Electrospinning process was performed at different PVAs to honey ratios (100/0, 90/10, 80/20, 70/30, and 60/40). Dexamethasone sodium phosphate was selected as an anti‐inflammatory drug and incorporated in the electrospinning solutions. Its release behavior was determined. Uniform and smooth nanofibers were formed, independent of the honey content. In case honey content increased up to 40%, some spindle‐like beads on the fibers were observed. The diameter of electrospun fibers decreased as the ratio of honey increased. The release characteristics of the model drug from both the PVA and PVA/honey (80/20) nanofibrous mats were studied and statistical analysis was performed. All electrospun fibers exhibited a large initial burst release at a short time after incubation. The release profile was similar for both PVA and PVA/honey (80/20) drug‐loaded nanofibers. This study shows that an anti‐inflammatory drug can be released during the initial stages and honey can be used as a natural antibiotic to improve the wound dressing efficiency and increase the healing rate. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci, 2013
In this study, twisted drug-loaded poly(L-lactide) (PLLA) and hybrid poly(L-lactide)/poly(vinyl alcohol) (PLLA/PVA) yarns were produced using an electrospinning technique based on two oppositely charged nozzles. Cefazolin, an antibiotic drug was incorporated in the yarn fibers by addition to the PLLA electrospinning solution. Morphological studies showed that independent of the twist rate, uniform and smooth fibers were formed. The diameter of the electrospun fibers in the yarns decreased at higher twist rates but produced yarns with larger diameters. At increasing twist rates the crystallinity of the fibers in the yarns increased. In the presence of cefazolin the fiber diameter, yarn diameter and crystallinity were always lower than in the non-drug loaded yarns. In addition the yarn mechanical properties revealed a slightly lower strength, modulus and elongation at break upon drug loading. The effect of the twist rate on the cefazolin in vitro release behavior from both PLLA and hybrid yarns revealed similar profiles for both types of drug-loaded yarns. However, the total amount of drug released from the hybrid PLLA/PVA yarns was significantly higher. The release kinetics over a period of 30 d were fitted to different mathematical models. Cefazolin release from electrospun PLLA yarns was governed by a diffusion mechanism and could best be fitted by Peppas and Higuchi models. The models that were found best to describe the drug release mechanism from the hybrid PLLA/PVA yarns were a first-order model and the Higuchi model.
Poly (l‐lactide) (PLLA) fibrous yarns were prepared by electrospinning of polymer solutions in 2,2,2‐trifluoroethanol. Applying spinning from two oppositely charged needles the spontaneous formed triangle of fibers at a grounded substrate could be assembled into fibrous yarns using a device consisting of a take‐up roller and twister. The effect of processing parameters on the morphology, diameter and mechanical properties of PLLA yarns was investigated by the response surface methodology (RSM). This method allowed evaluating a quantitative relationship between polymer concentration, voltage, take‐up rate and distance between the needles' center and the take‐up unit on the properties of the electrospun fibers and yarns. It was found that at increasing concentrations up to 9 wt % uniform fibers were obtained with increasing mean diameters. Conversely, the fiber diameter decreased slightly when the applied voltage was increased. The take‐up rate had a significant influence on the yarn diameter, which increased as the take‐up rate decreased. The tensile strength and modulus of the yarns were correlated with these variables and it was found that the polymer concentration had the largest influence on the mechanical properties of the yarns. By applying the RSM, it was possible to obtain a relationship between processing parameters which are important in the fabrication of electrospun yarns. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015, 132, 41388.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.