Increasing penetration of intermittent renewable energy sources and the development of advanced information give rise to questions on how responsive loads can be managed to optimise the use of resources and assets. In this context, demand response as a way for modifying the consumption pattern of customers can be effectively applied to balance the demand and supply in electricity networks. This study presents a novel stochastic model from a microgrid (MG) operator perspective for energy and reserve scheduling considering risk management strategy. It is assumed that the MG operator can procure energy from various sources, including local generating units and demand-side resources to serve the customers. The operator sells electricity to customers under real-time pricing scheme and the customers response to electricity prices by adjusting their loads to reduce consumption costs. The objective is to determine the optimal scheduling with considering risk aversion and system frequency security to maximise the expected profit of operator. To deal with various uncertainties, a riskconstrained two-stage stochastic programming model is proposed where the risk aversion of MG operator is modelled using conditional value at risk method. Extensive numerical results are shown to demonstrate the effectiveness of the proposed framework.
This paper proposes a stochastic bi-level decision-making model for an electric vehicle (EV) aggregator in a competitive environment. In this approach, the EV aggregator decides to participate in day-ahead (DA) and balancing markets, and provides energy price offers to the EV owners in order to maximize its expected profit. Moreover, from the EV owners' viewpoint, energy procurement cost of their EVs should be minimized in an uncertain environment. In this study, the sources of uncertainty-including the EVs demand, DA and balancing prices and selling prices offered by rival aggregators-are modeled via stochastic programming. Therefore, a two-level problem is formulated here, in which the aggregator makes decisions in the upper level and the EV clients purchase energy to charge their EVs in the lower level. Then the obtained nonlinear bi-level framework is transformed into a single-level model using Karush-Kuhn-Tucker (KKT) optimality conditions. Strong duality is also applied to the problem to linearize the bilinear products. To deal with the unwilling effects of uncertain resources, a risk measurement is also applied in the proposed formulation. The performance of the proposed framework is assessed in a realistic case study and the results show that the proposed model would be effective for an EV aggregator decision-making problem in a competitive environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.