In connection with fast heating in a laser produced plasma (LPP) extreme ultraviolet (EUV) source, the superheating behavior of bulk tin (Sn) at high heating rates is investigated. A constant temperature and pressure molecular dynamics simulation using modified Lennard-Jones and Coulomb potentials suitable for studying the liquid structure of Sn is employed in order to derive the caloric curves of the solid and liquid phases. The results have shown transient effects on the phase transitions. Superheating is observed during the melting and vaporizing processes. The velocity distribution of Sn particles against typical laser fluence in a LPP EUV light source has been numerically investigated using a simplified method including a one-dimensional, two-temperature, molecular dynamics, and steady-state ionization model. In the framework of our model, it was found that ejected Sn particles have a maximum velocity on the order of 10 to 40 km/ s in plasma created using a nanosecond pre-pulse neodymium-doped yttrium aluminum garnet (Nd:YAG, 1.06 lm) laser in EUV lithography experiments. V
We obtained the local foil properties of the JT-60U imaging bolometer foil (a single graphite-coated gold foil with an effective area of 9 × 7 cm 2 and a nominal thickness of 2.5 µm) such as the thermal diffusivity, κ, and the product of the thermal conductivity, k, and the thickness, t f , by calibrating some parts of the foil. Calibration of the foil was made in situ using a He-Ne laser (∼27 mW) as a known radiation source to heat the foil. The thermal images of the foil are provided by an infrared (IR) camera (microbolometer type). The parameters are determined by finite element modeling (FEM) of the foil temperature and comparing the solution to the experimental results. In this work we apply this calibration technique to investigate the spatial variation of the foil parameters. Significant variation in the local temperature rise of the foil due to local heating by the laser beam indicates a spatial variation of the foil parameters κ, k and t f . This variation is possibly due to nonuniformity in carbon coating and/or the thickness of the foil.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.