Latent infections with periodic reactivation are a common outcome after acute infection with many viruses. The latency-associated transcript (
LAT
) gene is required for wild-type reactivation of herpes simplex virus (HSV). However, the underlying mechanisms remain unclear. In rabbit trigeminal ganglia, extensive apoptosis occurred with
LAT
−
virus but not with
LAT
+
viruses. In addition, a plasmid expressing
LAT
blocked apoptosis in cultured cells. Thus,
LAT
promotes neuronal survival after HSV-1 infection by reducing apoptosis.
During herpes simplex virus type 1 (HSV-1) neuronal latency, the only viral RNA detected is from the latency-associated transcript (LAT) gene. We have made a LAT deletion mutant of McKrae, an HSV-1 strain with a very high in vivo spontaneous reactivation rate. This mutant (dLAT2903) lacks the LAT promoter and the first 1.6 kb of the 5' end of LAT. dLAT2903 was compared with its parental virus and with a rescued virus containing a restored LAT gene (dLAT2903R). Replication of the LAT mutant in tissue culture, rabbit eyes, and rabbit trigeminal ganglia was similar to that of the rescued and parental viruses. On the basis of semiquantitative PCR analysis of the amount of HSV-1 DNA in trigeminal ganglia, the LAT mutant was unimpaired in its ability to establish latency. In contrast, spontaneous reactivation of dLAT2903 in the rabbit ocular model of HSV-1 latency and reactivation was decreased to approximately 33% of normal. This decrease was highly significant (P < 0.0001) and demonstrates that in an HSV-1 strain with a high spontaneous reactivation rate, deletion of LAT can dramatically decrease in vivo spontaneous reactivation. We also report here that deletion of LAT appeared to eliminate rather than just reduce in vivo induced reactivation.
Using a combination of in situ hybridization and Northern (RNA) blot analysis, we investigated herpes simplex virus type 1 (HSV-1) transcriptional activity in an ocular rabbit model of HSV-1 latency. Radioactively labeled cloned fragments, representing virtually the entire HSV-1 genome, were individually hybridized to RNA in sections of trigeminal ganglia taken from rabbits during the latent phase of infection with HSV-1 (McKrae). Our results suggest that two discrete latency-related RNAs (LR-RNAs) may be present. The LR-RNAs were localized mainly in the nuclei of neurons. The more abundant LR-RNA was detected in approximately 3% of all neurons examined and was designated major LR-RNA. The other LR-RNA, designated minor LR-RNA, was detected in approximately 0.3% of neurons from latently infected rabbits. The genes for the LR-RNAs mapped in the vicinity of the immediate-early gene ICPO (also designated IE110). The gene for the major LR-RNA partially overlapped the left (3') end of the ICPO gene. In situ hybridization with single-stranded RNA probes showed that this LR-RNA was of complementary sense to that of ICPO mRNA. Northern blot analysis gave an approximate size for this LR-RNA of 1.8 to 2.2 kilobases. The minor LR-RNA mapped to or near the right (5') end of the ICPO gene. The detection of LR-RNAs suggests the possibility that these RNAs or their products may play significant roles in the initiation and/or maintenance of HSV-1 latency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.