The ultrathin nanocomposite coatings made of zirconium oxide (ZrO 2 ), zinc oxide (ZnO), and titanium oxide (TiO 2 ) on stainless steel (SS) were prepared by the radio frequency sputtering method, and the effects of the nanocomposite coating on corrosion protection and antibacterial activities of nanocomposite coated SS were investigated. Scanning electron microscopy was conducted to observe surface morphology of nanocomposite coatings with distinct distribution of grains with the formation on SS substrate. From the electrochemical impedance spectroscopy results, ZrO 2 /ZnO/TiO 2 nanocomposite coating showed excellent corrosion protection performance at 37 °C during immersion in simulated body fluid and saliva solution for 12 and 4 weeks, respectively. The impedance of ZrO 2 /ZnO/ TiO 2 (40/10/50) nanocomposite coated SS exhibited values about 5 orders of magnitude higher than that of uncoated SS with polarization at the low-frequency region. Cell viability of ZrO 2 /ZnO/TiO 2 nanocomposite coated SS was examined under mouse fibroblasts culture (L929), and it was observed that the nanocomposite coating improves proliferation through effective cellular attachment compared to uncoated SS. From the antimicrobial activity results, ZrO 2 /ZnO/TiO 2 nanocomposite-coated SS showed killing efficiency of 81.2% and 72.4% against Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus, respectively.
Rutile TiO 2 was formulated into polyurethane/polysiloxane hybrid coatings in order to investigate the influence of pigmentation on the inorganic phase of the hybrid coatings. Two urethanes were prepared from the isocyanurate of hexane diisocyanate (HDI), alkoxysilane modified HDI, and tetraethyl orthosilicate (TEOS) oligomers, with oligoesters derived from either cyclohexane diacids (CHDA) and 2-butyl-2-ethyl-1,3-propanediol (BEPD) or adipic acid (AA), isophthalic acid (IPA), 1,6-hexanediol (HD), and trimethylol propane (TMP). The oligoesters were spectroscopically characterized using GPC, FT-IR, and NMR. Chemical interaction between the TiO 2 and the sol-gel precursor was investigated using solid-state 29 Si NMR and XPS. The morphology, mechanical, viscoelastic, thermal properties of the pigmented coatings are evaluated as a function of pigmentation volume concentration (PVC). Using AFM and SEM, the pigment was observed to be well dispersed in the polymer binder. The thermal stability, the tensile modulus, and strength of the coatings were enhanced with increasing PVC, whereas the pull-off adhesion and flexibility (elongation-at-break) were reduced with increasing PVC. Finally, the pigmented coatings were evaluated by electrochemical impedance spectroscopy (EIS) and the results showed that 10 wt % of the pigment improved the corrosion resistance of the entire coating system.
Pitting corrosion is a significant concern for the broader application of stainless steel in modern industries in which metal and metal alloy are detached preferentially from susceptible parts on the surface, resulting in the creation of holes in passivated alloys that are exposed to an aqueous, neutral electrolyte containing corrosive species. Exposure of SS to brines leads to the localized loss of surface passivity and the onset of isolated pitting, which render the equipment or piping unfit for service. In the present study, the passive layer behavior and the pitting corrosion of the modified martensitic stainless steel (MMSS) were evaluated in a saturated CO2 environment (pH~5) with different NaCl concentrations and temperatures, using various electrochemical techniques. It was found that by increasing the temperature up to 60 °C, the corrosion resistance of the MMSS increased; however, the corrosion rate dramatically increased at 80 °C, indicating the destruction of the oxide layer. According to the point defect model (PDM) results, the calculated values of polarizability (α), metal cation diffusivity (D), and the rate of annihilation of cation vacancies (jm), reveal a strong dependence on the solution temperature.
Dielectric materials that can withstand high voltages are of great interest due to the growing need for high‐performance insulation systems in electronics. Polymer nanocomposites have gained popularity as electrical insulators due to their processability, high operating voltage, and tortuous paths for current flow created by the nanoparticles in the polymer matrix. The dielectric breakdown strength of a relatively thick multilayer thin film containing polyethylenimine (PEI) and vermiculite clay (VMT), thickened with tris(hydroxymethyl)aminomethane (tris), is evaluated as a function of bilayers (BL) deposited. The resulting nanobrick wall structure of this clay‐based assembly is ideal for protective insulation. An 8 BL PEI+tris/VMT film achieves a dielectric breakdown strength of 245 kV mm−1, with a thickness of 5 µm. With increasing bilayers, the breakdown strength gradually decreases, but 20 BL of PEI+tris/VMT achieves a breakdown voltage of 2.36 kV. This nanoplatelet‐based system is the first “thick growing” layer‐by‐layer deposited film to be used as an insulating layer. Its unusually high breakdown strength can be useful for the protection of various high voltage electronics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.