We quantize abelian Yang-Mills theory on Riemannian manifolds with boundaries in any dimension. The quantization proceeds in two steps. First, the classical theory is encoded into an axiomatic form describing solution spaces associated to manifolds. Second, the quantum theory is constructed from the classical axiomatic data in a functorial manner. The target is general boundary quantum field theory, a TQFT-type axiomatic formulation of quantum field theory.Combining (3.11) and (3.10) then yieldsThe relevant integral in (3.12) is
Abstract. We propose a general reduction procedure for classical field theories provided with abelian gauge symmetries in a Lagrangian setting. These ideas come from an axiomatic presentation of the general boundary formulation (GBF) of field theories, mostly inspired by topological quantum field theories (TQFT). We construct abelian Yang-Mills theories using this framework. We treat the case for space-time manifolds with smooth boundary components as well as the case of manifolds with corners. This treatment is the GBF analogue of extended TQFTs. The aim for developing this classical formalism is to accomplish, in a future work, geometric quantization at least for the abelian case.
We define a family of observables for abelian Yang-Mills fields associated to compact regions U ⊆ M with smooth boundary in Riemannian manifolds. Each observable is parametrized by a first variation of solutions and arises as the integration of gauge invariant conserved current along admissible hypersurfaces contained in the region. The Poisson bracket uses the integration of a canonical presymplectic current.MSC: 70S10; 70S15; 58Z05; 49S05
En este trabajo consideramos modelos con tratamiento de radiación periódico contra el cáncer que describen la dinámica de las poblaciones celulares en un tumor. Establecemos la existencia de órbitas periódicas, utilizando la teoría de los sistemas cooperativos. Damos condiciones suficientes para la unicidad de la solución periódica, también para que esta sea un atractor global. Realizamos simulaciones numéricas utilizando funciones de radiación específicas para ilustrar nuestros resultados analíticos.
We prove that for certain polynomial differential equations in the plane arising from predator-prey type III models with generalized rational functional response, any algebraic solution should be a rational function. As a consequence, limit cycles, which are unique for these dynamical systems, are necessarily trascendental ovals. We exemplify these findings by showing a numerical simulation within a system arising from zooplankton-phytoplankton dynamics.
RESUMENProbamos que para ciertas ecuaciones diferenciales polinomiales en el plano que aparecen a partir de modelos predador-presa de tipo III con respuesta funcional racional generalizada, toda solución algebraica debe ser una función racional. Como consecuencia, los ciclos límite, que son únicos para estos sistemas dinámicos, son necesariamente óvalos trascendentes. Ejemplificamos estos resultados mostrando una simulación numérica para un sistema que aparece en la dinámica de zooplancton-fitoplancton.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.