Background: Proper connectivity between type I spiral ganglion neurons (SGNs) and inner hair cells (IHCs) in the cochlea is necessary for conveying sound information to the brain in mammals. Previous studies have shown that type I SGNs are heterogeneous in form, function and synaptic location on IHCs, but factors controlling their patterns of connectivity are not well understood. Results: During development, cochlear supporting cells and SGNs expressSemaphorin-3A (SEMA3A), a known axon guidance factor. Mice homozygous for a point mutation that attenuates normal SEMA3A repulsive activity (Sema3a K108N ) show cochleae with grossly normal patterns of IHC innervation. However, genetic sparse labeling and three-dimensional reconstructions of individual SGNs show that cochleae from Sema3a K108N mice lacked the normal synaptic distribution of type I SGNs. Additionally, Sema3a K108N cochleae show a disrupted distribution of GLUA2 postsynaptic patches around the IHCs. The addition of SEMA3A-Fc to postnatal cochleae led to increases in SGN branching, similar to the effects of inhibiting glutamate receptors. Ca 2+ imaging studies show that SEMA3A-Fc decreases SGN activity. Conclusions: Contrary to the canonical view of SEMA3A as a guidance ligand, our results suggest SEMA3A may regulate SGN excitability in the cochlea, which may influence the morphology and synaptic arrangement of type I SGNs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.