Residual stress and manufacturing time are two serious challenges that hinder the widespread industry adoption and implementation of the powder-bed fusion (PBF) process. Commercial Multi-Laser PBF (ML-PBF) systems have been developed by several vendors in recent years, which dramatically increase the production rate by employing more heat sources (up to 4 laser beams). Although numerous research works conducted toward mitigation of the effects of residual stress on printed parts in the Single Laser PBF (SL-PBF) process, no research work on this topic has been reported for the ML-PBF process to date.
One of the most efficient real-time approaches to mitigate the influence of residual stress and as such the process lead time effectively is to improve the scanning strategy. This approach can be also implemented effectively in the ML-PBF process. In this work, we extend the previously developed GAMP (Genetic Algorithm Maximum Path) strategy for optimizing the scanning path in ML-PBF. The E-GAMP (the Extended GAMP) strategy manipulates the printing topology of the islands and generates more thermally efficient scanning patterns for the chessboard scanning strategy in ML-PBF. This strategy extends the single thermal heat source to multiple ones (2 as well as 3 lasers). To validate the effectiveness of the proposed strategy, we simulate the thermal distribution throughout a simple rectangular layer by ABAQUS for both the traditional successive scanning strategy and the E-GAMP strategy. The results demonstrate that the E-GAMP strategy considerably decreases the manufacturing time while it reduces the maximum temperature gradient, or in other words, generates a more uniform temperature distribution throughout the exposure layer.
The development of lithium-ion batteries (LIBs) based on current practice allows an energy density increase estimated at 10% per year. However, the required power for portable electronic devices is predicted to increase at a much faster rate, namely 20% per year. Similarly, the global electric vehicle battery capacity is expected to increase from around 170 GWh per year today to 1.5 TWh per year in 2030—this is an increase of 125% per year. Without a breakthrough in battery design technology, it will be difficult to keep up with their increasing energy demand. The objective of this investigation is to develop a design methodology to accelerate the LIB development through the integration of electro-chemical numerical simulations and machine learning algorithms. In this work, the Gaussian process (GP) regression model is used as a fast approximation of numerical simulation (conducted using Simcenter Battery Design Studio®). The GP regression models are systematically updated through a multi-objective Bayesian optimization algorithm, which enables the exploration of innovative designs as well as the determination of optimal configurations. The results reported in this work include optimal thickness and porosities of LIB electrodes for several practical charge–discharge scenarios which maximize energy density and minimize capacity fade.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.