The magnetized iron calorimeter (ICAL) detector proposed at the India-based Neutrino Observatory will be a 51 kton detector made up of 151 layers of 56 mm thick soft iron layers with 40 mm air gap in between where the RPCs, the active detectors, will be placed. The main goal of ICAL is to make precision measurements of the neutrino oscillation parameters using the atmospheric neutrinos as source. The charged current interactions of the atmospheric muon neutrinos and antineutrinos in the detector produce charged muons. The magnetic field, with a maximum value of ∼ 1.5 T in the central region of ICAL, is a critical component since it will be used to distinguish the charges and determine the momentum and direction of these muons. The geometry of the ICAL has been optimized to detect muons in the energy range of 1-15 GeV. It is difficult to measure the magnetic field inside iron, therefore measuring field using external methods can introduce error. In this study the effect of error in measurement of magnetic field in ICAL is studied. An attempt is made to know how the uncertainty in the magnetic field values will propagate in the reconstruction of momentum and other aspects of the physics analysis of the data from ICAL detector using GEANT4 simulations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.