BackgroundA unique combination of mechanical, physiochemical and biological forces influences granulation during processes of anaerobic digestion. Understanding this process requires a systems biology approach due to the need to consider not just single-cell metabolic processes, but also the multicellular organization and development of the granule.ResultsIn this computational experiment, we address the role that physiochemical and biological processes play in granulation and provide a literature-validated working model of anaerobic granule de novo formation. The agent-based model developed in a cDynoMiCs simulation environment successfully demonstrated a de novo granulation in a glucose fed system, with the average specific methanogenic activity of 1.11 ml C H 4/g biomass and formation of a 0.5 mm mature granule in 33 days. The simulated granules exhibit experimental observations of radial stratification: a central dead core surrounded by methanogens then encased in acidogens. Practical application of the granulation model was assessed on the anaerobic digestion of low-strength wastewater by measuring the changes in methane yield as experimental configuration parameters were systematically searched.ConclusionsIn the model, the emergence of multicellular organization of anaerobic granules from randomly mixed population of methanogens and acidogens was observed and validated. The model of anaerobic de novo granulation can be used to predict the morphology of the anaerobic granules in a alternative substrates of interest and to estimate methane potential of the resulting microbial consortia. The study demonstrates a successful integration of a systems biology approach to model multicellular systems with the engineering of an efficient anaerobic digestion system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.