Objective: To measure the prognostic value of the lymphocyte-monocyte ratio (LMR) in patients with epithelial ovarian cancer (EOC).Methods: We retrospectively examined the LMR as a prognosticator in a cohort of 234 patients with EOC who underwent surgical resection. Patients were categorized into two different groups based on the LMR (LMR-low and LMR-high) using cut-off values determined by receiver operating characteristic (ROC) curve analysis. The objective of the study was to assess the effect of the LMR on progression-free survival (PFS) and overall survival (OS), and to validate the LMR as an independent predictor of survival.Results: Using the data collected from the whole cohort, the optimized LMR cut-off value selected on the ROC curve was 2.07 for both PFS and OS. The LMR-low and LMR-high groups included 48 (20.5%) and 186 patients (79.5%), respectively. The 5-year PFS rates in the LMR-low and LMR-high groups were 40.0 and 62.5% (P < 0.0001), respectively, and the 5-year OS rates in these two groups were 42.2 and 67.2% (P < 0.0001), respectively. On multivariate analysis, we identified age, International Federation of Gynecology and Obstetrics (FIGO) stage, and cancer antigen 125 levels to be the strongest valuable prognostic factors affecting PFS (P = 0.0421, P = 0.0012, and P = 0.0313, respectively) and age, FIGO stage, and the LMR as the most valuable prognostic factors predicting OS (P = 0.0064, P = 0.0029, and P = 0.0293, respectively).Conclusion: The LMR is an independent prognostic factor affecting the survival of patients with EOC.
The aim of this study was to examine the relationship between main air pollutants and all cancer mortality by performing a meta-analysis. We searched PubMed, EMBASE (a biomedical and pharmacological bibliographic database of published literature produced by Elsevier), and the reference lists of other reviews until April 2018. A random-effects model was employed to analyze the meta-estimates of each pollutant. A total of 30 cohort studies were included in the final analysis. Overall risk estimates of cancer mortality for 10 µg/m3 per increase of particulate matter (PM)2.5, PM10, and NO2 were 1.17 (95% confidence interval (CI): 1.11–1.24), 1.09 (95% CI: 1.04–1.14), and 1.06 (95% CI: 1.02–1.10), respectively. With respect to the type of cancer, significant hazardous influences of PM2.5 were noticed for lung cancer mortality and non-lung cancer mortality including liver cancer, colorectal cancer, bladder cancer, and kidney cancer, respectively, while PM10 had harmful effects on mortality from lung cancer, pancreas cancer, and larynx cancer. Our meta-analysis of cohort studies indicates that exposure to the main air pollutants is associated with increased mortality from all cancers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.