In the present work, a sustained-release film composed of silk fibroin (SF), curcumin (Cur), glutaraldehyde (GA), and glycerol (Gly) was prepared successfully for wound dressings. Features relevant to wound dressings of SF/Gly/GA/Cur film were assessed. Physical and chemical properties of the fabricated materials were also characterized. The results showed that the prepared SF/Gly/GA/Cur film demonstrated a good sustained-release performance, flexibility, and gas permeability. In addition, it was found that the prepared SF/Gly/GA/Cur film possessed the capability to effectively inhibit the growth of bacteria and prevent bacterial penetration with a suitable water vapor transmission rate. Furthermore, the prepared composite film was non-cytotoxic, which makes it an ideal material for wound dressings.
Bombyx mori silk fibroin-based materials have good biocompatibility and biodegradability. In order to maximize their utility while maintain appropriate features, silk fibroin (SF) films were modified with reduced glutathione (GSH) (NH 2 )–ECG–(COOH), using the carbodiimide chemistry method, for the introduction of thiol groups onto surfaces. The effects of this modification on SF films’ chemical and physical properties, and cytotoxicity were assessed. The chemical and elemental composition analysis results suggested that reduced glutathione (GSH) was covalently coupled onto the surface of silk fibroin films. Atomic force microscopy (AFM) results indicated the surface roughness of silk fibroin film was increased after the modification by GSH. The GSH-modified silk fibroin films also showed the smaller contact angle due to the hydrophilic peptides coupled on the film surface. Through MTT assay, it was shown that the chemically modified SF film was not cytotoxic to HEK293 cells, and it had no adverse influence on the growth of HEK293 cells. Our approach provides a new option to engineer SF-based material surface with thiol groups in order to allow for secondary reactions and holds great promise for applications of SF-based materials in the biomedical field. Electronic supplementary material The online version of this article (10.1186/s13065-019-0583-x) contains supplementary material, which is available to authorized users.
In this article,we report the results obtained from a study adopting solution of sodium naphthalene complex to modify the poly(chloro-p-xylylene)(parylene C) thin film.In this work,the function group and the crystal structure of the film before and after modifying are characterized separately with Attenuated Total Reflection Fourier transformation infrared spectroscopy(ATR- FTIR)and X-ray diffraction(XRD).The result of test shows that the bond of carbon(C) and chlorine(Cl) is damaged;The crystalline of the film reduces,and the NaCl crystal exist on the film surface.The surface energy of the film is increased from 28.64mJ/m2 to 41.48mJ/m2.The generalized analysis result indicated that nucleophilic reagent destructs the C-Cl bond on the benzene ring, the chlorine(Cl) atom on the benzene ring and the sodium ion in modified reagent forms the sodium chloride which adheres to the film surface.
Recycled aggregate concrete technology has been payed widely attention. In addition to the research on the basic performance of recycled aggregate concrete, the impact resistance performance of recycled aggregate concrete was also involved. Through mixing respectively steel fiber, polypropylene fiber and steel-polypropylene hybrid fiber into the recycled aggregate concrete, the writer studied the impact resistance performance of fiber-reinforced recycled aggregate concrete, and compared the influence of reinforced fiber on the impact resistance performance of recycled aggregate concrete.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.