Recycled aggregate is essential to protect Jeju Island’s natural environment, but waste concrete, including porous basalt, is a factor that lowers the quality of recycled aggregate. Therefore, an experiment was conducted to analyze the properties of concrete application of basalt-based recycled aggregate (B-RA) through quality improvement. The absorption of the B-RA ranged from 3–5%; restricting its absorption to less than 3% was challenging owing to its porosity and irregular shape. However, the increase in the solid volume percentage of the concrete when replacing 25 or 50% of fresh basalt aggregate with recycled basalt aggregate improved the mechanical performance of the concrete, especially at 25%, for which a compressive strength of 55.9 MPa and modulus of elasticity of 25.9 GPa exceeded those of concrete with fresh basalt aggregate. Moreover, increasing the replacement ratio of the fresh basalt with recycled aggregate reduced the slump and decreased the air content, consequently increasing the concrete drying shrinkage. However, the replacement of fresh basalt aggregate with recycled basalt aggregate unaltered the mechanical performance of the concrete. The results indicate that efficient use of recycled aggregates can yield superior performance to that of fresh basalt, irrespective of aggregate quality.
To replace porous basalt, the mechanical properties of concrete with recycled resources and durability improvement were analyzed in this study. The analysis was based on the quality improvement of recycled aggregate, use of fly ash, and changes in curing conditions. Basalt aggregate (BA) with a 3% water absorption, raw recycled aggregate and basalt (RRA), and improved recycled aggregate and basalt (PRA) were the main experimental variables. As PRA was applied to concrete, the compressive strength was lower than that of the specimen comprising BA in the normal strength region, but the modulus of elasticity (22.9 GPa) was equivalent or higher. The initial drying shrinkage increased because of the use of basalt-based recycled aggregate (B-RA). The drying shrinkage of PRA was similar to that of BA with an average difference of <7% as the age increased. The specimens subjected to steam curing exhibited the lowest drying shrinkage. These results showed that pores in the old paste of recycled aggregate increased freeze–thaw resistance because of the increase in the spacing factor. Although the PRA did not satisfy the quality criteria, the efficient use of recycled aggregate achieved an equivalent or higher performance than that of concrete comprising BA and improved durability.
This study demonstrated the use of KCl separated from chlorine bypass dust (CBD) as an activator for plain concrete. The separated KCl was mixed with either ground granulated blast-furnace slag (BFS) alone, or a mixture of BFS and cement. The mixed paste of separated KCl and BFS set within 24 h, and exhibited a compressive strength of 22.6 MPa after 28 d. The separated KCl, cement, and BFS mixture exhibited a more rapid setting and a higher initial activity. Further, the compressive strength at 28 d was 57.7 MPa, which was 26.2% higher than that of the mixture without the activator. Water curing of samples with added separated KCl led to the generation of hydrocalumite, or Friedel’s salt. However, this hydrocalumite was decomposed while being cured under autoclave conditions at 180 °C. Overall, KCl was an effective activator for composite materials containing cement, and resulted in superior properties compared to mineral admixtures without an activator.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.