Human complex action recognition is an important research area of the action recognition. Among various obstacles to human complex action recognition, one of the most challenging is to deal with self-occlusion, where one body part occludes another one. This paper presents a new method of human complex action recognition, which is based on optical flow and correlated topic model (CTM). Firstly, the Markov random field was used to represent the occlusion relationship between human body parts in terms of an occlusion state variable. Secondly, the structure from motion (SFM) is used for reconstructing the missing data of point trajectories. Then, we can extract the key frame based on motion feature from optical flow and the ratios of the width and height are extracted by the human silhouette. Finally, we use the topic model of correlated topic model (CTM) to classify action. Experiments were performed on the KTH, Weizmann, and UIUC action dataset to test and evaluate the proposed method. The compared experiment results showed that the proposed method was more effective than compared methods.
Human action recognition is an important area of human action recognition research. Focusing on the problem of self-occlusion in the field of human action recognition, a new adaptive occlusion state behavior recognition approach was presented based on Markov random field and probabilistic Latent Semantic Analysis (pLSA). Firstly, the Markov random field was used to represent the occlusion relationship between human body parts in terms an occlusion state variable by phase space obtained. Then, we proposed a hierarchical area variety model. Finally, we use the topic model of pLSA to recognize the human behavior. Experiments were performed on the KTH, Weizmann, and Humaneva dataset to test and evaluate the proposed method. The compared experiment results showed that what the proposed method can achieve was more effective than the compared methods.
This paper presents a novel method of human action recognition, which is based on the reconstructed phase space. Firstly, the human body is divided into 15 key points, whose trajectory represents the human body behavior, and the modified particle filter is used to track these key points for self-occlusion. Secondly, we reconstruct the phase spaces for extracting more useful information from human action trajectories. Finally, we apply the semisupervised probability model and Bayes classified method for classification. Experiments are performed on the Weizmann, KTH, UCF sports, and our action dataset to test and evaluate the proposed method. The compare experiment results showed that the proposed method can achieve was more effective than compare methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.