An experimental study of oxidation of nano aluminum (Al) powders in CO2 and O2 is described. The oxidation is studied using thermogravimetric (TG) measurements from room temperature to 1500°C. Partially oxidized samples are recovered and their compositions are analyzed using X-ray diffraction. The oxidation product morphology was examined using SEM. Dimensional properties of aluminum particles have a significant influence on the oxidation processes. The nano aluminum reaction onset temperature was much lower than micro aluminum. Distinctly different oxidation properties of nano aluminum powders were shown between CO2 and O2. nano aluminum powders could ignite in O2 at fairly low temperatures around 530 °C. However ignition for nano aluminum powders in CO2 didn't appeared below 1500 °C. There was a weight loss in the TG curves at around 1200 °C for nano Al-CO2 system. It was thought that small amount of carbon formed in the oxidation process. The XRD showed that both the nano aluminum oxidation products were α-Al2O3 in CO2 and O2.
Detonation pressure profiles in TNT/RDX and its mixtures with aluminum powders of different particle size have been studied with Manganin piezoresistance gauge. The measured detonation pressure accorded with the calculated detonation pressure. The results show that micrometer aluminum powders reacted with detonation at times of 0.5μs after the peak pressure. Aluminum powders did not react in the detonation zone, and introducing aluminum into explosive would reduce the detonation pressure. Compare with micrometer aluminum powders, nanometer aluminum powders reacted with detonation product more quickly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.