Background/Aims: Triple-negative breast cancer (TNBC) is a subtype of highly malignant breast cancer with poor prognosis. Growing evidence indicates that Long noncoding RNAs (lncRNAs) play important regulatory roles in the development and progression of a variety of cancers including breast cancer. However, the underlying mechanisms remain largely unknown. Methods: Here, we compared the expression profiles of mRNAs, lncRNAs and miRNAs between 111 TNBC tissues and 104 non-cancerous tissues utilizing RNA-Seq Data from The Cancer Genome Atlas (TCGA). Gene Ontology and KEGG pathway enrichment analyses were executed to investigate the principal functions of the significantly dysregulated mRNAs. Moreover, Kaplan-Meier survival analyses were performed to determine the effects of differentially expressed lncRNAs/mRNAs/miRNAs on overall survival. Subsequently, we constructed a competing endogenous RNA (ceRNA) network, which included 66 dysregulated lncRNAs, 24 miRNAs and 55 mRNAs. The four dysregulated lncRNAs, three aberrantly expressed miRNAs and four mRNAs were confirmed in the ceRNA network by qRT-PCR in 30 pairs of samples, respectively. Results: A total of 1441 lncRNAs, 114 miRNA and 2501 mRNAs were found to be differentially expressed in TNBC tissues compared with controls. 109 lncRNAs and 124 mRNAs might serve as prognostic signature for patients with TNBC according to the survival analysis. Functional analysis revealed that 19 mRNAs in the ceRNA network were enriched in 17 cancer-related pathways. Conclusion: Taken together, we identified novel lncRNAs/miRNAs which may serve as potential biomarkers to predict the survival and therapeutic targets for TNBC patients based on a large-scale sample. More importantly, we constructed the ceRNA network of TNBC, which provides valuable information to further explore the molecular mechanism underlying tumorigenesis and development of TNBC.
Accumulating evidence indicates that the aberrant expression of long noncoding RNAs (lncRNAs) is involved in tumorigenesis and cancer development. However, the biological functions and underlying mechanisms of lncRNAs in bladder cancer (BC) remain largely unknown. Here, we analyzed the lncRNA and mRNA expression profiles in BC using a microarray assay. We found that lncRNA RP11-79H23.3 and phosphatase and tensin homolog (PTEN) were significantly downregulated in BC tissues and cells. Meanwhile, RP11-79H23.3 expression was negatively correlated with clinical stage in BC. Functionally, we found that overexpression of RP11-79H23.3 could suppress cell proliferation, migration, and cell cycle progression, rearrange the cytoskeleton, and induce apoptosis in vitro. Moreover, upregulation of RP11-79H23.3 inhibited the angiogenesis, tumorigenesis, and lung metastasis in vivo, whereas RP11-79H23.3 knockdown exerted a contrary role. Mechanistically, we identified that RP11-79H23.3 could directly bind to miR-107 and abolish the suppressive effect on target gene PTEN, which leads to inactivation of the PI3K/Akt signaling pathway. Taken together, we first demonstrated that RP11-79H23.3 might suppress the pathogenesis and development of BC by acting as a sponge for miR-107 to increase PTEN expression. Our research revealed that RP11-79H23.3 could be a potential target for diagnosis and therapy of BC.
miRNAs have emerged as promising markers for tumors. However, the underlying mechanism of specific miRNAs in bladder cancer (BC) remains largely unknown. Here, a comprehensive miRNA/mRNA expression profile was executed by microarray assay for four pairs of bladder carcinoma and para-carcinoma tissues from patients with grade 2 (G2) T2. A total of 99 miRNAs and 4416 mRNAs were discovered to be significantly differentially expressed in BC tissues compared with controls. Five microRNAs and two mRNAs were validated by qRT-PCR in 30 pairs of samples, including G1-G3/T1-T4. Subsequently, we constructed a network with the five miRNAs-target mRNAs; gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were utilized to recognize the functions and associated pathways. Moreover, we further found that miR-130b-3p was significantly up-regulated and negatively correlated with phosphatase and tensin homolog (PTEN) expression in bladder cancer tissues. Next, we demonstrated that miR-130b-3p might target PTEN through bioinformatics and dual-luciferase reporter assay. Finally, we showed that miR-130b-3p could down-regulate PTEN expression, which promoted proliferation, migration, invasion and rearranged cytoskeleton through the activation of the PI3K and integrin β1 signaling pathway in bladder cancer cells. Inversely, miR-130b-3p inhibitors induced apoptosis. Taken together, this research investigated, for the first time, miR-130b-3p by an incorporated analysis of microRNA/mRNA expressions of a genome-wide screen in BC. Our findings suggest that the miR-130b-3p/PTEN/integrin β1 axis could play a critical role in the progression and development of BC and that miR-130b-3p might be a valuable clinical marker and therapeutical target for BC patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.