Brown planthopper (BPH) is a destructive insect pest of rice in Asia. Identification and the incorporation of new BPH resistance genes into modern rice cultivars are important breeding strategies to control the damage caused by new biotypes of BPH. In this study, a major resistance gene, Bph18(t), has been identified in an introgression line (IR65482-7-216-1-2) that has inherited the gene from the wild species Oryza australiensis. Genetic analysis revealed the dominant nature of the Bph18(t) gene and identified it as non-allelic to another gene, Bph10 that was earlier introgressed from O. australiensis. After linkage analysis using MapMaker followed by single-locus ANOVA on quantitatively expressed resistance levels of the progenies from an F2 mapping population identified with marker allele types, the Bph18(t) gene was initially located on the subterminal region of the long arm of chromosome 12 flanked by the SSR marker RM463 and the STS marker S15552. The corresponding physical region was identified in the Nipponbare genome pseudomolecule 3 through electronic chromosome landing (e-landing), in which 15 BAC clones covered 1.612 Mb. Eleven DNA markers tagging the BAC clones were used to construct a high-resolution genetic map of the target region. The Bph18(t) locus was further localized within a 0.843-Mb physical interval that includes three BAC clones between the markers R10289S and RM6869 by means of single-locus ANOVA of resistance levels of mapping population and marker-gene association analysis on 86 susceptible F2 progenies based on six time-point phenotyping. Using gene annotation information of TIGR, a putative resistance gene was identified in the BAC clone OSJNBa0028L05 and the sequence information was used to generate STS marker 7312.T4A. The marker allele of 1,078 bp completely co-segregated with the BPH resistance phenotype. STS marker 7312.T4A was validated using BC2F2 progenies derived from two temperate japonica backgrounds. Some 97 resistant BC2F2 individuals out of 433 screened completely co-segregated with the resistance-specific marker allele (1,078 bp) in either homozygous or heterozygous state. This further confirmed a major gene-controlled resistance to the BPH biotype of Korea. Identification of Bph18(t) enlarges the BPH resistance gene pool to help develop improved rice cultivars, and the PCR marker (7312.T4A) for the Bph18(t) gene should be readily applicable for marker-assisted selection (MAS).
A new rice mutant Suweon 464 (S-464) derived from a high-quality rice, Ilpumbyeo (IP), revealed a striking difference in cooking quality from IP. The physicochemical properties of S-464 and IP were compared. S-464 was unusually high in amylose and fiber contents, had B-type crystallinity of starch, and had a markedly lower proportion of short chains in the distribution of glucan-chain fractions of debranched starch as compared with IP. Scanning electron microscopy revealed that starch granules of S-464 were much smaller in size than those of IP and that many of them were not separated from amyloplasts. The physicochemical properties of S-464 would contribute to poor gelatinization, lower swelling power, higher hardness, and less stickiness when cooked. Although S-464 may not be desirable for cooked rice, the mutant could be an excellent candidate for other processed food products on the basis of its unusual properties of starch and high fiber, protein, and lipid contents.
Via angular Shubnikov-de Hass (SdH) quantum oscillations measurements, we determine the Fermi surface topology of NbAs, a Weyl semimetal candidate. The SdH oscillations consist of two frequencies, corresponding to two Fermi surface extrema: 20.8 T (α-pocket) and 15.6 T (β-pocket). The analysis, including a Landau fan plot, shows that the β-pocket has a Berry phase of π and a small effective mass ∼0.033 m0, indicative of a nontrivial topology in momentum space; whereas the α-pocket has a trivial Berry phase of 0 and a heavier effective mass ∼0.066 m0. From the effective mass and the β-pocket frequency we determine that the Weyl node is 110.5 meV from the chemical potential. A novel electron-hole compensation effect is discussed in this system, and its impact on magneto-transport properties is addressed. The difference between NbAs and other monopnictide Weyl semimetals is also discussed.
We have investigated the Fermi surface ͑FS͒ and electronic structure of delafossite PdCoO 2 . We have explored the dependence of electronic structure on the surface termination, considering both CoO 2 -and Pdterminated PdCoO 2 slabs. Two FS features are obtained, one larger FS from the Pd-related bulk states and the other smaller one from surface states. The bulk FS is produced mainly by the Pd 4d 3z 2 −r 2 −Pd 5s-hybridized state, ⌿ d−s , which is responsible for the high in-plane conductivity in PdCoO 2 . The surface FS observed in angle-resolved photoemission spectroscopy is found to be produced by the hybridized Co t 2g −O 2p surface states for the CoO 2 -terminated PdCoO 2 . Due to the localized nature of the surface states, consideration of the spin-orbit and exchange interactions is essential to describe surface electronic structures near E F correctly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.