This study proposed an evaluation model of mathematics teaching quality under recurrent neural network for the sake of making the evaluation model of mathematics teaching quality have good fault tolerance. This model decomposes the initial data sequence of mathematics teaching quality evaluation into high- and low-frequency sequence by wavelet analysis and reconstructs it by using phase space. After introducing the recurrent neural network model, the data is reconstructed after model training, and the data mining is carried out for the evaluation of mathematics teaching quality. In the process of constructing the evaluation model, the evaluation index system should be constructed based on three dimensions firstly, and the evaluation index of association rules should be defined, so as to realize deep dig of data and obtain the phase space distribution of data and then carry out the constraint test of parameters to evaluate the mathematics teaching quality scientifically and accurately. After verification, it is known that the average values of training error and test error of the model proposed in this paper are 3.02% and 2.61%, and the average values of absolute error and relative error are 0.58 and 3.82%. This model can retain the valid data information in the initial sequence, and the evaluation results of mathematics teaching quality are relatively ideal, which greatly improves the efficiency and level of mathematics teaching.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.