Weyl semimetals are a class of materials that can be regarded as three-dimensional analogs of graphene upon breaking time-reversal or inversion symmetry. Electrons in a Weyl semimetal behave as Weyl fermions, which have many exotic properties, such as chiral anomaly and magnetic monopoles in the crystal momentum space. The surface state of a Weyl semimetal displays pairs of entangled Fermi arcs at two opposite surfaces. However, the existence of Weyl semimetals has not yet been proved experimentally. Here, we report the experimental realization of a Weyl semimetal in TaAs by observing Fermi arcs formed by its surface states using angle-resolved photoemission spectroscopy. Our first-principles calculations, which match remarkably well with the experimental results, further confirm that TaAs is a Weyl semimetal.
We have performed a high-resolution angle-resolved photoelectron spectroscopy study on the newly discovered superconductor Ba0.6K0.4Fe2As2 (Tc = 37 K). We have observed two superconducting gaps with different values: a large gap (∆ ∼ 12 meV) on the two small holelike and electron-like Fermi surface (FS) sheets, and a small gap (∼ 6 meV) on the large hole-like FS. Both gaps, closing simultaneously at the bulk transition temperature (Tc), are nodeless and nearly isotropic around their respective FS sheets. The isotropic pairing interactions are strongly orbital dependent, as the ratio 2∆/kBTc switches from weak to strong coupling on different bands. The same and surprisingly large superconducting gap due to strong pairing on the two small FSs, which are connected by the (π, 0) spin-density-wave vector in the parent compound, strongly suggests that the pairing mechanism originates from the inter-band interactions between these two nested FS sheets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.