ObjectivesHeart failure (HF) is a progressive syndrome that marks the end-stage of heart diseases, and it has a high mortality rate and significant cost burden. In particular, non-adherence of medication in HF patients may result in serious consequences such as hospital readmission and death. This study aims to identify predictors of medication adherence in HF patients. In this work, we applied a Support Vector Machine (SVM), a machine-learning method useful for data classification.MethodsData about medication adherence were collected from patients at a university hospital through self-reported questionnaire. The data included 11 variables of 76 patients with HF. Mathematical simulations were conducted in order to develop a SVM model for the identification of variables that would best predict medication adherence. To evaluate the robustness of the estimates made with the SVM models, leave-one-out cross-validation (LOOCV) was conducted on the data set.ResultsThe two models that best classified medication adherence in the HF patients were: one with five predictors (gender, daily frequency of medication, medication knowledge, New York Heart Association [NYHA] functional class, spouse) and the other with seven predictors (age, education, monthly income, ejection fraction, Mini-Mental Status Examination-Korean [MMSE-K], medication knowledge, NYHA functional class). The highest detection accuracy was 77.63%.ConclusionsSVM modeling is a promising classification approach for predicting medication adherence in HF patients. This predictive model helps stratify the patients so that evidence-based decisions can be made and patients managed appropriately. Further, this approach should be further explored in other complex diseases using other common variables.
BackgroundAccumulating evidence suggests that tobacco smoking affects the susceptibility to and severity of chronic periodontitis. Epigenetics may explain the role of smoking in the development and progress of periodontal disease. In this study, we performed transcriptomic and methylomic analyses of non-periodontitis and periodontitis-affected gingival tissues according to smoking status.MethodsHuman gingival tissues were obtained from 20 patients, including non-smokers with and without periodontitis (n = 5 per group) and smokers with and without periodontitis (n = 5 per group). Total RNA and genomic DNA were isolated, and their quality was validated according to strict standards. The Illumina NextSeq500 sequencing system was used to generate transcriptome and methylome datasets.ResultsComprehensive analysis, including between-group correlation, differential gene expression, DNA methylation, gene set enrichment, and protein-protein interaction, indicated that smoking may change the transcription and methylation states of extracellular matrix (ECM) organization-related genes, which exacerbated the periodontal condition.ConclusionsOur results suggest that smoking-related changes in DNA methylation patterns and subsequent alterations in the expression of genes coding for ECM components may be causally related to the increased susceptibility to periodontitis in smokers as they could influence ECM organization, which in turn may have an effect on disease characteristics.Electronic supplementary materialThe online version of this article (doi:10.1186/s13148-017-0381-z) contains supplementary material, which is available to authorized users.
ObjectivesThe aim of this study was to establish a prediction model of medication adherence in elderly patients with chronic diseases and to identify variables showing the highest classification accuracy of medication adherence in elderly patients with chronic diseases using support vector machine (SVM) and conventional statistical methods, such as logistic regression (LR).MethodsWe included 293 chronic disease patients older than 65 years treated at one tertiary hospital. For the medication adherence, Morisky's self-report was used. Data were collected through face-to-face interviews. The mean age of the patients was 73.8 years. The classification process was performed with LR (SPSS ver. 20.0) and SVM (MATLAB ver. 7.12) method.ResultsTaking into account 16 variables as predictors, the result of applying LR and SVM classification accuracy was 71.1% and 97.3%, respectively. We listed the top nine variables selected by SVM, and the accuracy using a single variable, self-efficacy, was 72.4%. The results suggest that self-efficacy is a key factor to medication adherence among a Korean elderly population both in LR and SVM.ConclusionsMedication non-adherence was strongly associated with self-efficacy. Also, modifiable factors such as depression, health literacy, and medication knowledge associated with medication non-adherence were identified. Since SVM builds an optimal classifier to minimize empirical classification errors in discriminating between patient samples, it could achieve a higher accuracy with the smaller number of variables than the number of variables used in LR. Further applications of our approach in areas of complex diseases, treatment will provide uncharted potentials to researchers in the domains.
Clinical Practice Guidelines (CPGs) play an important role in improving the quality of care and patient outcomes. Although several machine-readable representations of practice guidelines implemented with semantic web technologies have been presented, there is no implementation to represent uncertainty with respect to activity graphs in clinical practice guidelines. In this paper, we are exploring a Bayesian Network(BN) approach for representing the uncertainty in CPGs based on ontologies. Based on the representation of uncertainty in CPGs, when an activity occurs, we can evaluate its effect on the whole clinical process, which, in turn, can help doctors judge the risk of uncertainty for other activities, and make a decision. A variable elimination algorithm is applied to implement the BN inference and a validation of an aspirin therapy scenario for diabetic patients is proposed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.