In the cerebellum, synaptic strength at the synapses between parallel fibers and Purkinje cells is best known to be modulated via metabotropic glutamate receptor 1 (mGluR1)-dependent cerebellar long-term depression (LTD). An increase in intracellular calcium levels plays an important role in inducing mGluR1-dependent cerebellar LTD. Downstream of mGluR1, there are two major sources of calcium: transient receptor potential canonical (TRPC) channels and inositol trisphosphate receptors (IP 3 R). IP 3 R triggers a calcium release from the intracellular calcium store. Here, we show that TRPC channels mediate mGluR1-evoked slow currents to regulate cerebellar LTD in Sprague Dawley rats. We found that the inhibition of TRPC channels blocks the induction of cerebellar LTD. Moreover, we show that processes known to underlie cerebellar LTD induction, such as increases in intracellular calcium concentration, the activation of protein kinase C, and the internalization of GluR2, are also hindered by blocking TRPC. These results suggest that the mGluR1-evoked activation of TRPC channels is required for the induction of cerebellar LTD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.