This study was conducted to investigate the effect of HS on HSPs gene expression in bovine PBMCs of beef calves in in vitro and in vivo models. In the in vitro experiment, blood samples were collected from the jugular vein of five beef calves (age: 174.2 ± 5.20 days, BW: 145.2 ± 5.21 kg). In the in vivo experiment, sixteen Korean native male beef calves (age: 169.6 ± 4.60 days, BW: 136.9 ± 6.23 kg) were exposed to ambient temperature for seven days (22 to 24 °C, relative humidity 60%; temperature–humidity index (THI) = 68 to 70) and subsequently to the temperature and humidity corresponding to the target THI level for 21 days (HS). For PBMC isolation, blood samples were collected every three days. In the in vitro model, the cell viability was significantly decreased in HS groups compared with the control group (p = 0.015). The expression of HSP70 (p = 0.022), HSP90 (p = 0.003) and HSPB1 (p = 0.026) genes was increased in the HS group in in vitro model. In the in vivo experiment, the HSP70 gene expression was increased after sudden exposure to HS conditions (severe THI levels; THI = 88 to 90), whereas HSP90 and HSPB1 showed no differences among the THI groups (p > 0.05). However, in the severe THI group, the HSP70 gene expression returned to normal range after six days of continuous HS. In conclusion, the HSP70 gene plays a pivotal role in protecting cells from damage and is sensitive to HS in immune cells compared with other HSP genes in in vitro and in vivo models. In addition, the in vivo models suggest that calves exhibit active physiological mechanisms of adaptation to HS after six days of continuous exposure by regulating the HSP70 gene expression.
This study aims to characterize the influence of short-term heat stress (HS; 4 day) in early lactating Holstein dairy cows, in terms of triggering blood metabolomics and parameters, milk yield and composition, and milk microRNA expression. Eight cows (milk yield = 30 ± 1.5 kg/day, parity = 1.09 ± 0.05) were homogeneously housed in environmentally controlled chambers, assigned into two groups with respect to the temperature humidity index (THI) at two distinct levels: approximately ~71 (low-temperature, low-humidity; LTLH) and ~86 (high-temperature, high-humidity; HTHH). Average feed intake (FI) dropped about 10 kg in the HTHH group, compared with the LTLH group (p = 0.001), whereas water intake was only numerically higher (p = 0.183) in the HTHH group than in the LTLH group. Physiological parameters, including rectal temperature (p = 0.001) and heart rate (p = 0.038), were significantly higher in the HTHH group than in the LTLH group. Plasma cortisol and haptoglobin were higher (p < 0.05) in the HTHH group, compared to the LTLH group. Milk yield, milk fat yield, 3.5% fat-corrected milk (FCM), and energy-corrected milk (ECM) were lower (p < 0.05) in the HTHH group than in the LTLH group. Higher relative expression of milk miRNA-216 was observed in the HTHH group (p < 0.05). Valine, isoleucine, methionine, phenylalanine, tyrosine, tryptophan, lactic acid, 3-phenylpropionic acid, 1,5-anhydro-D-sorbitol, myo-inositol, and urea were decreased (p < 0.05). These results suggest that early lactating cows are more vulnerable to short-term (4 day) high THI levels—that is, HTHH conditions—compared with LTLH, considering the enormous negative effects observed in measured blood metabolomics and parameters, milk yield and compositions, and milk miRNA-216 expression.
As the preference of consumers for casein products has increased, the protein content of milk from dairy cows is drawing more attention. Protein synthesis in the milk of dairy cows requires a proper supply of dietary protein. High protein supplementation may help to produce more milk protein, but residues in feces and urine cause environmental pollution and increase production costs. As such, previous studies have focused on protein supplements and amino acid (AA) supply. This review concerns AA nutrition for enhancing milk protein in dairy cows, and mainly focuses on three AAs: methionine, lysine, and histidine. AA supplementation for promoting protein synthesis is related to the mammalian target of rapamycin (mTOR) complex and its downstream pathways. Each AA has different stimulating effects on the mTOR translation initiation pathway, and thus manifests different milk protein yields. This review will expand our understanding of AA nutrition and the involved pathways in relation to the synthesis of milk protein in dairy cows.
The purpose of this study was to investigate the effect of cold stress (CS) on the physiological, blood, and behavioral parameters of beef cattle according to their growth stage. Twelve calves in the growing stages (220.4 ± 12.33 kg, male and non-castrated) and twelve steers in the early fattening stages (314.2 ± 18.44 kg) were used in this experiment. The animals were randomly distributed into three homogenized groups (four animals each) for 14 days, namely threshold, mild–moderate cold stress (MCS), and extreme cold stress (ECS), according to the outside ambient temperature. The feed and water intakes were recorded daily. The physiological parameters, blood parameters, and behavioral patterns were measured weekly. All data were analyzed using repeated-measures analysis. The calves exposed to the ECS decreased (p < 0.064, tendency) their dry matter intake compared to the threshold and MCS groups. The HR and RT increased (p < 0.001) in the ECS compared to the threshold in calves and steers. Moreover, increased (p < 0.05) blood cortisol, non-esterified fatty acids (NEFA), and time spent standing were observed after exposure to ECS in calves and steers. However, the calves exposed to the ECS had decreased (p = 0.018) blood glucose levels compared to the threshold. In conclusion, ECS affects the dry matter intake, HR, RT, blood cortisol, NEFA, and behavioral patterns in beef calves and steers. This phenomenon indicated that beef cattle exposed to CS modulated their behavior and blood parameters as well as their physiological response to maintain homeostasis regardless of the growth stage.
Heat stress (HS) damages the global beef industry by reducing growth performance causing high economic losses each year. However, understanding the physiological mechanisms of HS in Hanwoo calves remains elusive. The objective of this study was to identify the potential biomarkers and metabolic pathways involving different levels of heat stress in Hanwoo calves. Data were collected from sixteen Hanwoo bull calves (169.6 ± 4.6 days old, BW of 136.9 ± 6.2 kg), which were maintained at four designated ranges of HS according to the temperature–humidity index (THI) including: threshold (22 to 24 °C, 60%; THI = 70 to 73), mild (26 to 28 °C, 60%; THI = 74 to 76), moderate (29 to 31 °C, 80%; THI = 81 to 83), and severe (32 to 34 °C, 80%; THI = 89 to 91) using climate-controlled chambers. Blood was collected once every three days to analyze metabolomics. Metabolic changes in the serum of calves were measured using GC-TOF-MS, and the obtained data were calculated by multivariate statistical analysis. Five metabolic parameters were upregulated and seven metabolic parameters were downregulated in the high THI level compared with the threshold (p < 0.05). Among the parameters, carbohydrates (ribose, myo-inositol, galactose, and lactose), organic compounds (acetic acid, urea, and butenedioic acid), fatty acid (oleic acid), and amino acids (asparagine and lysine) were remarkably influenced by HS. These novel findings support further in-depth research to elucidate the blood-based changes in metabolic pathways in heat-stressed Hanwoo beef calves at different levels of THI. In conclusion, these results indicate that metabolic parameters may act as biomarkers to explain the HS effects in Hanwoo calves.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.