Spike-timing-dependent plasticity(STDP) is a biological process of synaptic modification caused by the difference of firing order and timing between neurons. One of neurodynamical roles of STDP is to form a macroscopic geometrical structure in the neuronal state space in response to a periodic input by Susman et al. (Nat. Commun.10(1), 1–9 2019), Yoon, & Kim. Stdp-based associative memory formation and retrieval. arXiv:2107.02429v2 (2021). In this work, we propose a practical memory model based on STDP which can store and retrieve high dimensional associative data. The model combines STDP dynamics with an encoding scheme for distributed representations and is able to handle multiple composite data in a continuous manner. In the auto-associative memory task where a group of images are continuously streamed to the model, the images are successfully retrieved from an oscillating neural state whenever a proper cue is given. In the second task that deals with semantic memories embedded from sentences, the results show that words can recall multiple sentences simultaneously or one exclusively, depending on their grammatical relations.
A disproportionately large communicating fourth ventricle (DLCFV) is a rare condition. A 34-year-old man experienced severe headaches, nausea, vomiting, and gait disturbance. Initial brain computed tomography (CT) showed markedly dilated ventricles with prepontine cistern shrinkage. Following extraventricular drain (EVD) insertion, approximately 400 mL/d of cerebrospinal fluid (CSF) was removed over 8 days. During this time, no significant changes in ventricle size were observed on CT images or the facial pain scale (FPS). We then performed an endoscopic third ventriculostomy and changed the drainage catheter. Immediately after surgery, the patient’s symptoms were relieved, and the drainage volume gradually decreased. EVD was successfully removed on the eighth postoperative day. Our experiences suggest that neurosurgeons should consider the importance of a third ventriculostomy for the diagnosis and treatment of DLCFV.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.