The nucleoid of radioresistant bacteria, including D. radiodurans, adopts a highly condensed structure that remains unaltered after exposure to high doses of irradiation. This structure may contribute to radioresistance by preventing the dispersion of DNA fragments generated by irradiation. In this report, we focused our study on the role of HU protein, a nucleoid-associated protein referred to as a histone-like protein, in the nucleoid compaction of D. radiodurans. We demonstrate, using a new system allowing conditional gene expression, that HU is essential for viability in D. radiodurans. Using a tagged HU protein and immunofluorescence microscopy, we show that HU protein localizes all over the nucleoid and that when HU is expressed from a thermosensitive plasmid, its progressive depletion at the non-permissive temperature generates decondensation of DNA before fractionation of the nucleoid into several entities and subsequent cell lysis. We also tested the effect of the absence of Dps, a protein also involved in nucleoid structure. In contrast to the drastic effect of HU depletion, no change in nucleoid morphology and cell viability was observed in dps mutants compared with the wild-type, reinforcing the major role of HU in nucleoid organization and DNA compaction in D. radiodurans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.