Using thin film ultrasonic dispersion method, the curcumin liposomes were prepared with milk fat globule membrane (MFGM) phospholipids and soybean lecithins, respectively, to compare the characteristics and stability of the 2 curcumin liposomes. The processing parameters of curcumin liposomes were investigated to evaluate their effects on the encapsulation efficiency. Curcumin liposomes were characterized in terms of size distribution, ζ-potential, and in vitro release behavior, and then their storage stability under various conditions was evaluated. The curcumin liposomes prepared with MFGM phospholipids had an encapsulation efficiency of about 74%, an average particle size of 212.3 nm, and a ζ-potential of -48.60 mV. The MFGM liposomes showed higher encapsulation efficiency, smaller particle size, higher absolute value of ζ-potential, and slower in vitro release than soybean liposomes. The retention rate of liposomal curcumin was significantly higher than that of free curcumin. The stability of the 2 liposomes under different pH was almost the same, but MFGM liposomes displayed a slightly higher stability than soybean liposomes under the conditions of Fe(3+), light, temperature, oxygen, and relative humidity. In conclusion, MFGM phospholipids have potential advantages in the manufacture of curcumin liposomes used in food systems.
AMP-forming acetyl-CoA synthetase (ACS) catalyzes the formation of acetyl-CoA. Here, a cDNA of ACS from Dunaliella tertiolecta (DtACS) was isolated using RACEs. The full-length DtACS cDNA (GenBank: KT692941) is 2,464 bp with a putative ORF of 2,184 bp, which encodes 727 amino acids with a predicted molecular weight of 79.72 kDa. DtACS has a close relationship with Chlamydomonas reinhardtii and Volvox carteri f. nagariensis. ACSs existing in Bacteria, Archaea and Eukaryota share ten conserved motifs (A1–A10) and three signature motifs (I–III) of the acyl-adenylate/thioester forming enzyme superfamily. DtACS was expressed in E. coli BL21 as Trx-His-tagged fusion protein (~100 kDa) and the enzymatic activity was detected. The recombinant DtACS was purified by HisTrapTM HP affinity chromatography to obtain a specific activity of 52.873 U/mg with a yield of 56.26%, which approached the specific activity of ACS isolated from other eukaryotes. Kinetic analysis indicated that the Km of DtACS was 3.59 mM for potassium acetate, and the purified DtACS exhibited a temperature optimum of 37 °C and a pH optimum of 8.0. In addition, the expression levels of DtACS were increased after nitrogen starvation cultivation, indicating that ACS activity may be related to the lipid accumulation under nitrogen deficient condition.
Oleaginous microorganism is becoming one of the most promising oil feedstocks for biodiesel production due to its great advantages in triglyceride (TAG) accumulation. Previous studies have shown that de novo TAG biosynthesis can be divided into two parts: the fatty acid biosynthesis pathway (the upstream part which generates acyl-CoAs) and the glycerol-3-phosphate acylation pathway (the downstream part in which three acyl groups are sequentially added onto a glycerol backbone). This review mainly focuses on two enzymes in the G3P pathway, phosphatidic acid phosphatase (PAP) and diacylglycerol acyltransferase (DGAT). The former catalyzes a dephosphorylation reaction, and the latter catalyzes a subsequent acylation reaction. Genes, functional motifs, transmembrane domains, action mechanism, and new studies of the two enzymes are discussed in detail. Furthermore, this review also covers diacylglycerol kinase, an enzyme that catalyzes the reverse reaction of diacylglycerol formation. In addition, PAP and DGAT are the conjunction points of the G3P pathway, the Kennedy pathway, and the CDP-diacylglycerol pathway (CDP-DAG pathway), and the mutual transformation between TAGs and phospholipids is discussed as well. Given that both the Kennedy and CDP-diacylglycerol pathways are in metabolic interlock (MI) with the G3P pathway, it is suggested that, via metabolic engineering, TAG accumulation can be improved by the two pathways based on the pivotal function of PAP and DGAT.
Geranylgeranyl diphosphate synthase (GGPS) catalyzes the biosynthesis of geranylgeranyl diphosphate, a key precursor for carotenoid biosynthesis. In this study, a full-length cDNA encoding GGPS from Dunaliella bardawil (DbGGPS) was isolated by rapid amplification of cDNA ends (RACE) for the first time. The full-length cDNA of DbGGPS was 1814 bp, containing a 1074 bp ORF encoding 357 amino acids with a calculated mass of 38.88 kDa. Analysis of DbGGPS genomic DNA revealed that it contained 10 exons and 9 introns. It was predicted that DbGGPS possessed a 48 amino acid transit peptide at its N terminus. Bioinformatic analysis revealed that DbGGPS was a member of a group of polyprenyltransferases with five conserved domains and two highly conserved aspartate-rich motifs. Using heterologous expression, carotenoid complementation assay, and gene deletion analysis, it was shown that the coding region of DbGGPS encodes a functional GGPS. This provides new gene sources for carotenoid genetic engineering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.