Cancer is one of the leading causes of death worldwide. Conventional cancer treatment relies on radiotherapy and chemotherapy, but both methods bring severe side effects to patients, as these therapies not only attack cancer cells but also damage normal cells. Anticancer peptides (ACPs) are a promising alternative as therapeutic agents that are efficient and selective against tumor cells. Here, we propose a deep learning method based on convolutional neural networks to predict biological activity (EC50, LC50, IC50, and LD50) against six tumor cells, including breast, colon, cervix, lung, skin, and prostate. We show that models derived with multitask learning achieve better performance than conventional single-task models. In repeated 5-fold cross validation using the CancerPPD data set, the best models with the applicability domain defined obtain an average mean squared error of 0.1758, Pearson's correlation coefficient of 0.8086, and Kendall's correlation coefficient of 0.6156. As a step toward model interpretability, we infer the contribution of each residue in the sequence to the predicted activity by means of feature importance weights derived from the convolutional layers of the model. The present method, referred to as xDeep-AcPEP, will help to identify effective ACPs in rational peptide design for therapeutic purposes. The data, script files for reproducing the experiments, and the final prediction models can be downloaded from http://github.com/chen709847237/xDeep-AcPEP. The web server to directly access this prediction method is at https://app.cbbio.online/acpep/home.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.