In the article, we present the best possible parameters α1, β1, α2, β2 ∈ ℝ and α3, β3 ∈ [1/2, 1] such that the double inequalities$$\begin{array}{}
\begin{split}
\displaystyle
\alpha_{1}C(a, b)+(1-\alpha_{1})A(a, b) & \lt T_{3}(a, b) \lt \beta_{1}C(a, b)+(1-\beta_{1})A(a, b),
\\
\alpha_{2}C(a, b)+(1-\alpha_{2})Q(a, b) & \lt T_{3}(a, b) \lt \beta_{2}C(a, b)+(1-\beta_{2})Q(a, b),
\\
C(\alpha_{3}; a, b) & \lt T_{3}(a, b) \lt C(\beta_{3}; a, b)
\end{split}
\end{array}$$hold for a, b > 0 with a ≠ b, and provide new bounds for the complete elliptic integral of the second kind, where A(a, b) = (a + b)/2 is the arithmetic mean, $\begin{array}{}
\displaystyle
Q(a, b)=\sqrt{\left(a^{2}+b^{2}\right)/2}
\end{array}$ is the quadratic mean, C(a, b) = (a2 + b2)/(a + b) is the contra-harmonic mean, C(p; a, b) = C[pa + (1 – p)b, pb + (1 – p)a] is the one-parameter contra-harmonic mean and $\begin{array}{}
T_{3}(a,b)=\Big(\frac{2}{\pi}\int\limits_{0}^{\pi/2}\sqrt{a^{3}\cos^{2}\theta+b^{3}\sin^{2}\theta}\text{d}\theta\Big)^{2/3}
\end{array}$ is the Toader mean of order 3.