Real‐time detection and differentiation of diverse external stimuli with one tactile senor remains a huge challenge and largely restricts the development of electronic skins. Although different sensors have been described based on piezoresistivity, capacitance, and triboelectricity, and these devices are promising for tactile systems, there are few, if any, piezoelectric sensors to be able to distinguish diverse stimuli in real time. Here, a human skin‐inspired piezoelectric tactile sensor array constructed with a multilayer structure and row+column electrodes is reported. Integrated with a signal processor and a logical algorithm, the tactile sensor array achieves to sense and distinguish the magnitude, positions, and modes of diverse external stimuli, including gentle slipping, touching, and bending, in real time. Besides, the unique design overcomes the crosstalk issues existing in other sensors. Pressure sensing and bending sensing tests show that the proposed tactile sensor array possesses the characteristics of high sensitivity (7.7 mV kPa−1), long‐term durability (80 000 cycles), and rapid response time (10 ms) (less than human skin). The tactile sensor array also shows a superior scalability and ease of massive fabrication. Its ability of real‐time detection and differentiation of diverse stimuli for health monitoring, detection of animal movements, and robots is demonstrated.
An impact-driven piezoelectric energy harvester from human motion is proposed in this paper. A high-frequency PZT-5A bimorph cantilever beam with attached proof mass at the free end was selected. A frequency up-conversion strategy was realized using impulse force generated by human motion. An aluminum prototype was attached to the leg of a person on a treadmill and measurements taken of the dissipated electric energy across multiple resistances over a range of walking speeds. The outer dimensions of this prototype are 90 mm × 40 mm × 24 mm. It has been shown that the average output voltage generated by the piezoelectric bimorph increases sequentially with a faster walking speed, the power varies with the external resistances and maximum levels occur at the optimal resistance, which is consistent with the simulation result. An open circuit voltage of 2.47 V and maximum average power of 51 μW can be achieved across a 20 kΩ external load resistance and 5 km h−1 walking speed. Experimental results reveal that the impact-driven piezoelectric energy harvesting system mounted on a person’s leg has the potential for driving wearable devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.