The resistive switching mechanism of 20-to 57-nm-thick TiO 2 thin films grown by atomic-layer deposition was studied by current-voltage measurements and conductive atomic force microscopy. Electric pulse-induced resistance switching was repetitively ͑Ͼ a few hundred times͒ observed with a resistance ratio ӷ10 2 . Both the low-and high-resistance states showed linear log current versus log voltage graphs with a slope of 1 in the low-voltage region where switching did not occur. The thermal stability of both conduction states was also studied. Atomic force microscopy studies under atmosphere and high-vacuum conditions showed that resistance switching is closely related to the formation and elimination of conducting spots. The conducting spots of the low-resistance state have a few tens times higher conductivity than those of the high-resistance state and their density is also a few tens times higher which results in a ϳ10 3 times larger overall conductivity. An interesting finding was that the area where the conducting spots do not exist shows a few times different resistance between the low-and high-resistance state films. It is believed that this resistance change is due to the difference in point defect density that was generated by the applied bias field. The point defects possibly align to form tiny conducting filaments in the high-resistance state and these tiny conducting filaments gather together to form stronger and more conducting filaments during the transition to the low-resistance state.
The evolution of ferroelectricity in undoped-HfO2 thin films is systematically studied by controlling the deposition temperature during atomic layer deposition.
For the development of resistive memory devices using NiO, improvements of several memory switching properties are required. In NiO memory cells with noble metal electrodes, broad dispersions of memory switching parameters are generally observed with continuous memory switchings. We report the improvements in minimizing the dispersions of all memory switching parameters using thin IrO2 layers between NiO and electrodes. The role of thin IrO2 layers on NiO growth and memory switching stabilization are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.