In this study, we prepared Te nanorod arrays via a galvanic displacement reaction (GDR) on a Si wafer, and their composite with poly(3,4-ethylenedioxythiophene) (PEDOT) were successfully synthesized by electrochemical polymerization with lithium perchlorate (LiClO4) as a counter ion. The thermoelectric performance of the composite film was optimized by adjusting the polymerization time. As a result, a maximum power factor (PF) of 235 µW/mK2 was obtained from a PEDOT/Te composite film electrochemically polymerized for 15 s at room temperature, which was 11.7 times higher than that of the PEDOT film, corresponding to a Seebeck coefficient (S) of 290 µV/K and electrical conductivity (σ) of 28 S/cm. This outstanding PF was due to the enhanced interface interaction and carrier energy filtering effect at the interfacial potential barrier between the PEDOT and Te nanorods. This study demonstrates that the combination of an inorganic Te nanorod array with electrodeposited PEDOT is a promising strategy for developing high-performance thermoelectric materials.
In this study, a novel chloride ion (Cl −) sensor based on Ag wire coated with an AgCl layer was fabricated using a gel-type internal electrolyte and a diatomite ceramic membrane, which played an important role in preventing electrolyte leakage from the ion-selective electrode. The sensing performance, including reversibility, response, recovery time, low detection limit, and the long-term stability, was systemically investigated in electrolytes with different Cl − contents. The as-fabricated Cl − sensor could detect Cl − from 1 to 500 mM KCl solution with good linearity. The best response and recovery time obtained for the optimized sensor were 0.5 and 0.1 s, respectively, for 10 mM KCl solution. An exposure period of over 60 days was used to evaluate the stability of the Cl − sensor in KCl solution. A relative error of 2% was observed between the initial and final response potentials. Further, a wireless sensing system based on Arduino was also investigated to measure the response potential of Cl − in an electrolyte. The sensor exhibited high reliability with a low standard error of measurement. This type of sensor is crucial for fabricating wireless Cl − sensors for applications in reinforced concrete structures along with favorable performances.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.