Position control is usually achieved using a position controller and a profile generator. The profile generator produces a desired position trajectory from a position reference and predefined profiles. The position controller forces the actual position to trace the generated position trajectory. A time-based profile generator is the most famous profile generator due to its capability of generating various profiles. However, time base difference in analysis and implementation causes a steady-state error. In order to remove the steady-state error, this paper proposes a novel profile generator for a trapezoidal velocity profile generation. The proposed generator is based on a cascaded P-PI position controller which is designed to trace the position reference. A dynamic range limiter is adopted to provide the acceleration and velocity restrictions which are basic functions for generating the trapezoidal profile. In spite of these restrictions, it cannot make a desired velocity profile only using the limiter because deceleration point is inaccurate. To adjust the deceleration point, a feedback compensator is designed which requires the velocity of the deceleration point. The velocity of the deceleration point is estimated from the initial position error. The compensator moves the deceleration point to the appropriate point which can generate the desired velocity profile. The proposed profile generator can remove the steady-state error, and the position response can be easily adjusted to be either overdamped or underdamped by selecting the two gains appropriately. Several experimental results are presented to verify the usefulness of the proposed generator.
This paper presents a rotation speed estimation and an indirect speed control method for a turbine-generator in a grid-connected 3-phase electrical power conversion system of an organic Rankine cycle (ORC) generation system. In addition to the general configuration mechanism and control techniques that are required in the grid-connected ORC power generation system, the indirect speed control method using the grid-side electric power control and the speed estimation method is proposed for the proper speed control of turbine-generators. The speed estimation method utilizes a digital phase-locked loop (PLL) method that uses a state observer to detect the positive-sequence voltages. A 10 kW system where a Motor-Generator set is used as a turbine simulator and a 23 kW actual system for the grid-connected ORC power generation were designed and manufactured, respectively. This paper includes various experimental results obtained from field tests conducted on actual installed ORC systems.
A capacitor deterioration of LCL-filter grid-connected PWM converters is progressed by the self-healing mechanism. It leads to the degradation of the filter performance and drop of power factor. Thus, it is required to diagnose fault-point of capacitors and determine the replacement time. Typically, the fault of capacitors is determined when the capacitance is reduced up to 80% from initial value. This paper proposes algorithm to the determine capacitor replacement time of an LCL filter. The algorithm takes the advantage of change of the response on the injected resonant frequency corresponding to 80% value from the initial capacitance. The results of the algorithm are demonstrated through simulations and experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.