A principal goal of cancer nanomedicine is to deliver therapeutics effectively to cancer cells within solid tumors. However, there are a series of biological barriers that impede nanomedicine from reaching target cells. Here, we report a stimuli-responsive clustered nanoparticle to systematically overcome these multiple barriers by sequentially responding to the endogenous attributes of the tumor microenvironment. The smart polymeric clustered nanoparticle (iCluster) has an initial size of ∼100 nm, which is favorable for long blood circulation and high propensity of extravasation through tumor vascular fenestrations. Once iCluster accumulates at tumor sites, the intrinsic tumor extracellular acidity would trigger the discharge of platinum prodrug-conjugated poly(amidoamine) dendrimers (diameter ∼5 nm). Such a structural alteration greatly facilitates tumor penetration and cell internalization of the therapeutics. The internalized dendrimer prodrugs are further reduced intracellularly to release cisplatin to kill cancer cells. The superior in vivo antitumor activities of iCluster are validated in varying intractable tumor models including poorly permeable pancreatic cancer, drug-resistant cancer, and metastatic cancer, demonstrating its versatility and broad applicability.nanomedicine | particle size | tumor penetration | tumor extracellular pH | stimuli responsive
The currently low delivery efficiency and limited tumor penetration of nanoparticles remain two major challenges of cancer nanomedicine. Here, we report a class of pH-responsive nanoparticle superstructures with ultrasensitive size switching in the acidic tumor microenvironment for improved tumor penetration and effective in vivo drug delivery. The superstructures were constructed from amphiphilic polymer directed assembly of platinum-prodrug conjugated polyamidoamine (PAMAM) dendrimers, in which the amphiphilic polymer contains ionizable tertiary amine groups for rapid pH-responsiveness. These superstructures had an initial size of ∼80 nm at neutral pH (e.g., in blood circulation), but once deposited in the slightly acidic tumor microenvironment (pH ∼6.5-7.0), they underwent a dramatic and sharp size transition within a very narrow range of acidity (less than 0.1-0.2 pH units) and dissociated instantaneously into the dendrimer building blocks (less than 10 nm in diameter). This rapid size-switching feature not only can facilitate nanoparticle extravasation and accumulation via the enhanced permeability and retention effect but also allows faster nanoparticle diffusion and more efficient tumor penetration. We have further carried out comparative studies of pH-sensitive and insensitive nanostructures with similar size, surface charge, and chemical composition in both multicellular spheroids and poorly permeable BxPC-3 pancreatic tumor models, whose results demonstrate that the pH-triggered size switching is a viable strategy for improving drug penetration and therapeutic efficacy.
Conspectus Over the past few decades, cancer nanomedicine has been under intensive development for applications in drug delivery, cancer therapy, and molecular imaging. However, there exist a series of complex biological barriers in the path of a nanomedicine from the site of administration to the site of action. These barriers considerably prevent a nanomedicine from reaching its targets in a sufficient concentration and thus severely limit its therapeutic benefits. According to the delivery process, these biological delivery barriers can be briefly summarized in the following order: blood circulation, tumor accumulation, tumor penetration, cellular internalization, and intracellular drug release. The therapeutic effect of a nanomedicine is strongly determined by its ability to overcome these barriers. However, advances in cancer biology have revealed that each barrier has its own distinct microenvironment, which imposes different requirements on the optimal design of nanocarriers, thus further complicating the delivery process. For example, the pH of blood is neutral, while the tumor extracellular environment features an acidic pH (pHe ≈ 6.5–7.0) and the endosome and lysosome are more acidic (pH 5.5–4.5). The nanoparticles (NPs) should be able to change their properties to adapt to each individual environment for robust and effective delivery. This demand promotes the design and development of smart delivery carriers that can respond to endogenous and exogenous stimuli. It is well-documented that tumors develop acidic extracellular microenvironments with pH ≈ 6.5–7.0 due to their abnormal metabolism in comparison with normal tissues. This provides a unique tool for designing smart NP drug delivery systems. Our studies have revealed that the NPs’ physiochemical properties, such as particle size and surface charge, have profound effects on their systemic transport in the body. In different delivery stages, the NPs should possess different sizes or surface charges for optimal performance. We developed a class of stimuli-responsive NPs by incorporating tumor-acidity-cleavable maleic acid amide (TACMAA) as a design feature. TACMAA is produced by the facile reaction of an amino group with 2,3-dimethylmaleic anhydride (DMMA) and its derivatives and can be cleaved under tumor acidity. By virtue of such characteristics, NPs containing TACMAA enable size or surface charge switching at tumor sites so that they can overcome those delivery barriers for improved drug delivery and cancer therapy. In this Account, we systemically review the development and evolution of TACMAA-based delivery systems and elaborate how TACMAA helps the innovation and design of intelligent nanocarriers for overcoming the delivery barriers. In particular, our Account focuses on five parts: TACMAA chemistry, tumor-acidity-triggered charge reversal, tumor-acidity-triggered shell detachment, tumor-acidity-triggered size transition, and tumor-acidity-triggered ligand reactivation. We provide detailed information on how tumor-acidity-triggered property ...
BackgroundEarthquakes and other catastrophic events frequently occurring worldwide can be considered as outliers and cause a growing and urgent need to improve our understanding of the negative effects imposed by such disasters. Earthquakes can intensively impact the birth outcomes upon psychological and morphological development of the unborn children, albeit detailed characteristics remain obscure.Methods and FindingsWe utilized the birth records at Du Jiang Yan and Peng Zhou counties to investigate the birth outcomes as a consequence of a major earthquake occurred in Wenchuan, China on May 12, 2008. Totally 13,003 of neonates were recorded, with 6638 and 6365 for pre- and post- earthquake, respectively. Significant low birthweight, high ratio of low birthweight, and low Apgar scores of post-earthquake group were observed. In contrast, the sex ratio at birth, birth length and length of gestation did not show statistical differences. The overall ratio of birth-defect in the post-earthquake (1.18%) is statistically high than that of pre-earthquake (0.99%), especially for those in the first trimester on earthquake day (1.47%). The birth-defect spectrum was dramatically altered after earthquake, with the markedly increased occurrences of ear malformations. The ratio of preterm birth post-earthquake (7.41%) is significant increased than that of pre-earthquake (5.63%). For the birth outcomes of twins, significant differences of the ratio of twins, birth weight, ratio of low birthweight and birth-defect rate were observed after earthquake.ConclusionA hospital-based study of birth outcomes impacted by the Wenchuan earthquake shows that the earthquake was associated with significant effects on birth outcomes, indicating it is a major monitor for long-term pregnant outcomes.
Live cells have been vastly engineered into drug delivery vehicles to leverage their targeting capability and cargo release behavior. Here, we describe a simple method to obtain therapeutics-containing “dead cells” by shocking live cancer cells in liquid nitrogen to eliminate pathogenicity while preserving their major structure and chemotaxis toward the lesion site. In an acute myeloid leukemia (AML) mouse model, we demonstrated that the liquid nitrogen–treated AML cells (LNT cells) can augment targeted delivery of doxorubicin (DOX) toward the bone marrow. Moreover, LNT cells serve as a cancer vaccine and promote antitumor immune responses that prolong the survival of tumor-bearing mice. Preimmunization with LNT cells along with an adjuvant also protected healthy mice from AML cell challenge.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.