To account for reproductive failure induced by surgical deletion of paternal accessory sex glands in the golden hamster in vivo, we studied expression of vegf, FLT-1 (VEGF-R1), FLK-1 (VEGF-R2), MMP and TGF-beta in endometrium of the dam and sired embryos during 5-7 days post coitum by immunohistochemistry, in situ hybridisation, semiquantitative RT-PCR and enzyme-linked immunosorbent assay. Spatiotemporal pattern of vegf expression in the control animals was similar to that reported for intact animals by our group. Removal of paternal ampullary glands did not disturb the normal expression pattern. Removal of ventral prostate glands alone or all accessory sex glands was associated with reduction of vegf transcripts and protein levels in both the embryo and endometrium. FLT-1, FLK-1 and MMP-2 were also reduced. MMP-1 was not changed whereas TGF-beta1 expression was enhanced. There was no expression in endometrium in between implantation sites. Thus the implanted embryos had a trophic effect on growth factor production by the endometrium, and the levels of expression were determined by viability and structural integrity of the conceptus. Based on these findings we concluded that incompetent embryos sired by males without the ventral prostate gland or all accessory sex glands reduced the potential of the uterus to support pregnancy. A negative cycle of events was thus set up and eventually led to premature termination of pregnancies.
Transforming growth factor-beta superfamily regulates many aspects of reproduction in the female. We identified a novel member of this family, growth-differentiation factor 8 (GDF-8) in the 72 h post coital uterine fluid of the golden hamster by proteomic techniques. Uterine GDF-8 mRNA decreased as pregnancy progressed while its active protein peaked at 72 h post coitus (hpc) and thereafter stayed at a lower level. At 72 hpc, the GDF-8 transcript was localized to the endometrial epithelium while its protein accumulated in the stroma. Exogenous GDF-8 slowed down proliferation of primary cultures of uterine smooth muscle cells (SMC) and endometrial epithelial cells (EEC). In addition, GDF-8 attenuated the release of LIF (leukaemia inhibiting factor) by EEC. As for the embryo in culture, GDF-8 promoted proliferation of the trophotoderm (TM) and hatching but discouraged attachment. Our study suggests that GDF-8 could regulate the behavior of preimplantation embryos and fine-tune the physiology of uterine environment during pregnancy.
Increased oxidative DNA damage is observed in sperm devoid of contact with accessory sex gland (ASG) secretion. After fertilization, these sperm may produce abnormal embryos. In this study, we investigated the possibility that the pattern of DNA methylation and imprinted gene expression in these embryos may be perturbed. Epididymal sperm, uterine sperm, and embryonic day 13 (E13) embryos were collected from hamster and mouse. The extent of global DNA methylation was determined with an antibody against methylcytosine using an embryo DNA dot. The sperm and embryo Gtl2 promoter and H19 differential methylated region (DMR) were subject to bisulfite sequencing. Expression of their reciprocally activated genes Dlk1 and Igf2 was quantified by real-time PCR. Genome-wide DNA hypomethylation in both hamster and mouse embryos sired by males without ASG was observed. The imprinting pattern of fetal mouse Gtl2 promoter and fetal hamster H19 DMR were also disrupted while the expression of Dlk1 and Igf2 was dysregulated in the hamster embryo. This study suggests that a lack of contact of sperm with the ASG secretion disrupts genomewide DNA methylation and also affects the DNA methylation pattern of imprinted genes in embryos.
Bre (brain and reproductive organ-expressed) is a new and putative stress-modulating gene of yet unknown function. BRE has previously been shown to interact with type 1 tumor necrosis factor receptor (TNFR1) and modulate the action of TNF. Apart from the brain and reproductive organs, Bre and BRE are highly expressed in steroid producing tissues such as the adrenal gland. Here we report for the first time the cloning of the Bre gene from golden hamster, a model organism extremely valuable for reproduction and steroid research, and examination of its tissue specific expression. Sequence analysis demonstrated that the peptide sequence of BRE in hamster shares approximately 99% homology with those of human, monkey and mouse. The hamster Bre gene transcribed an approximately 1.8-kb mRNA which translated a 44-kDa protein. Bre was strongly expressed in neurons and luminal epithelia of urogenital, digestive and respiratory organs. Bre was also detected in lymphoid tissues and endocrine glands. Immunohistochemistry demonstrated a similar protein expression pattern. Exceptions to this included the adrenal gland, where a high level of Bre was accompanied by weak immunoreactivity; as well as the oocytes and islets of Langerhans, where BRE protein but not the mRNA was localized. These data indicated that Bre gene products were expressed in a wide variety of tissues other than the brain and reproductive organs, as was originally described. Based on our findings, we propose that Bre is a housekeeping gene in tissues that are constantly subjected to environmental hazards such as luminal epithelia. Our results further support the proposed role for BRE in endocrine and immune functions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.