While many dynamical systems of mechanical origin, in particular billiards, are strongly chaotic -enjoy exponential mixing, the rates of mixing in many other models are slow (algebraic, or polynomial). The dynamics in the latter are intermittent between regular and chaotic, which makes them particularly interesting in physical studies. However, mathematical methods for the analysis of systems with slow mixing rates were developed just recently and are still difficult to apply to realistic models. Here we reduce those methods to a practical scheme that allows us to obtain a nearly optimal bound on mixing rates. We demonstrate how the method works by applying it to several classes of chaotic billiards with slow mixing as well as discuss a few examples where the method, in its present form, fails.
We present a functional analytic framework based on the spectrum of the transfer operator to study billiard maps associated with perturbations of the periodic Lorentz gas. We show that recently constructed Banach spaces for the billiard map of the classical Lorentz gas are flexible enough to admit a wide variety of perturbations, including: movements and deformations of scatterers; billiards subject to external forces; nonelastic reflections with kicks and slips at the boundaries of the scatterers; and random perturbations comprised of these and possibly other classes of maps. The spectra and spectral projections of the transfer operators are shown to vary continuously with such perturbations so that the spectral gap enjoyed by the classical billiard persists and important limit theorems follow.1 3 The assumption on the singularity set of T −1 F,G is not essential to our approach, but is made to simplify the proofs in Section 7, since the paper is already quite long and we include a number of distinct applications.
We study the statistical properties of a general class of two-dimensional hyperbolic systems with singularities by constructing Banach spaces on which the associated transfer operators are quasi-compact. When the map is mixing, the transfer operator has a spectral gap and many related statistical properties follow, such as exponential decay of correlations, the central limit theorem, the identification of Ruelle resonances, large deviation estimates and an almost-sure invariance principle. To demonstrate the utility of this approach, we give two applications to specific systems: dispersing billiards with corner points and the reduced maps for certain billiards with focusing boundaries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.